INTEGRAL TRANSFORMSANDVECTOR CALCUL
Unit—3
EQURIER SERIES
Objectives:

To introduce
» fourier series representation of a given function with period 2 (or) 21
» half range series representation of a given function with period 7 (or) l.

Syllabus:

Determination of Fourier coefficients (without proof) — Fourier series — even and odd

functions — Fourier series in an arbitrary interval—Half-range sine and cosine series.

Outcomes:
Students will be able to

> expand the given function as Fourier series in the interval [c, ¢+ 27 ]
> expand the given function as Fourier series in the interval [c, c+ 2] ]

» expand the given function as Half-range Sine [or] Cosine series in the
interval [0,{].

. : 2 2
> write the expansions of ®°, 7" ©°

8 6 12

Learning Material

Introduction:

It became important to study the possibility of representation of the given
function by infinite series other than power series. Since many phenomena like
vibration of string, the voltages and currents in electrical networks, electro-
magnetic signals, and movement of pendulum are periodic in nature.

There is a possibility of representing a periodic function as an infinite series
involving sinusoidal (sin x & cos x) functions. The French physicist J.B. Fourier
announced in his work on heat conduction that an arbitrary periodic function could
be expanded in a series of sinusoidal functions.

Thus, the aim of the theory of Fourier series is to determine the conditions
under which the periodic functions can be represented as linear combinations of sine

and cosine functions.

Fourier methods give us a set of powerful tools for representing any periodic
function as a sum of sines and cosines.

@ A graph of periodic function f(x) that has period L exhibits the nooa ‘.: xR
same pattern every L units along the z-axis, so that f(z + L) = f(x) (\ : v| \ " '¢‘ I
for every value of x. If we know what the function looks like over one R AYRAT RATRANR
complete period. we can thus sketch a graph of the function over a \ ,I "”‘ \| |"" \[
wider interval of = (that may contain many periods) T A e

One can even approximate a square-wave pattern with a suitable sum
that involves a fundamental sine-wave plus a combination of harmon- J \ l L |
ics of this fundamental frequency. This sum is called a Fourier series Sy S




Existence of Fourier series:

K/

+ Dirichlet’s Conditions :

ﬁa function f(x) is defined in I < x <l + 21, it can be expanded as a Fourier\
series provided the following Dirichlet’s conditions are satisfied

1. f(x) is singe valued and finite in the interval (c, c + 27)
2. f(x) is piece-wise continuous with finite number of discontinuities in

(c,c+2m).

\ 3. f(x) has finite number of maxima or minima in (c,c + 2 7). J

Note:

« These conditions are not necessary but only sufficient for the existence of Fourier series.
o If f(x) satisfies Dirichlet’s conditions and f(x) is defined in (c, ¢ + 27 ), then f(x) need not be
periodic for the existence of Fourier series of period 2 7T .
« Ifx = ais a point of discontinuity of f(x), then the value of the Fourier series atx = a is
%[f (@+)+ f(a-)]

Basic Formulae to Solve Integration : =~ —— =

Continuous Derivatives _Lontinuous Integration
L~ =

% Bracketing Method -
[Through Examples]

> I x2.Sinnx dx= (x{ Cosnx

Sin Cos@\ Cos@\

2 X = (x2) L |- - L — L
> | x2.Cos — dx (x ik (2x 3 +(2 —
L L2 L®

« Spl. Formulae to Remember -

ax ax

> e™.Sinbxdx = a.Sinbx—b.Cosbx e®*.Cosbxdx = a.Cosbx +b.Sinbx
-[ a? +b? [ | '[ a?+b? [ ]

a a

> I f (X) dx= Zjo f (X) dx [Here f(x) must be an Even function ]
—a

> Ia f (X) dx=0 [Here f(x) must be an odd function ]
-a

> Values to Remember : Sinnm =0 & CosnT = (—.'].)1

FULL RANGE FOURIER SERIES [Interval of length 2nr]

The Fourier series for the function f (X) in the interval [ c,c+ ZTE] is given by

[f (X)za_;+z”;(an cosnx+bnsinnx)J

[ i J{ J




Where a, =nljc+2n f(x)dx ,a,= ijwn f (x)cosnx.dx & b, =£j°+2n f (x)sin nx.dx
¢ T J¢ T v¢

C=0 > [0 2n ] Remember these
! formulae as this
- carries 6M Problem.
[f (x)= EO > (a, cosnx+b, sin nx)}
n=1
1 ¢con 1 ron 1 con .
Where ao = —I f(x)dx , an = —J. f(x).Cosnxdx & bn= —j fAX). Siremdetlst this formuta as
T Y0 T Y0 7T 0 this carries 6M Problem.
c=—T > [-n,n]
{f () =%+Z(an cosnx+bnsinnx)J
n=1
l i l T 1 e .
Where ao = I f(x)dx , a. = I f (x).Cosnxdx & b,= f (x).Sinnx dx
T Y7 T Y7 T J-7
Examples:

1. Find the Fourier series to represent f(x) = x2 in the interval (0,27 )

Sol. As the given interval is (0, 2T), Fourier series becomes -

f(x):%Jer:(an cosnx+b, sinnx)

n=1

Where ao = ijz" F(X)dX , an= ljz“ f (x).Cosnxdx & by= ifﬁ f (x).Sin nx dx
T Y0 7T Y0 T Y0
Step One : - Step Two : -

1 21 4
—;J;) x“dx = =

1 2 -

= [*" x? cosnx dx
o [ e

v

a, :%j(;”[(x)d \ %f:" f(x) cosnx dx

u

-1 -0

Sinnx COS NX Sinnx
n n
=82
= ao —;7[
e . 4
senthvee il ot g U

I

2sinnxd
\-mJ S i
u v

o o) e )]
E

f f(x) sin nx dx ——f

cos2nm =1
sin 2nm =

4n

n

J =




sl
Finally,

S == —'g——+ ) (%cos nx —%’sin nx)

4m? 4 4 .
=x?=—+X0, (7cos nx ——sin nx)
T n

Jx 0< X<m

2. Express the function f(x) = L

T T<X<L2T

as Fourier Series.

Sol. As the given interval is (0, 27), Fourier series becomes -

f(x)=a—2°+i(an cosnx+b, sinnx)

1 ¢on
Where a0 = — Iz f(x)dx , an=
7T 90

STEP ONE

| e | v
ta —/ Sixr)ds -

5]+ 5
(7-9)+(-7)
B 3

STEP TWO

Uy = =

fli) cosneda

l 4
I‘th/.{-ll r - - cosnrda

S
z

" T sin na x [sinnel®”
- / dr| + \
n o Jo n L N )

1 J'zn f(x).Cosnxdx & b,= 1 J‘zn f (x).Sinnx dx
T *0 7T~

ualng Hnegration by pors

Ly~ 0- o) }1_:7;_'_{_':]:&

¢ —{sinnds
n

sinnw)

STEP THREE

by 1 /‘ f{x ) sin nr dr
1 / e nrdr + !_ f = opinnx s

[l [ () ] o2 [

Hence the Fourier series becomes,

o = 1[3(0-0)+ (S-50)] +5(0-0)

1
= ~(cosnw 1) see TR
n=mw
1
= —((-1)"-1)
n=mw
,noodd

, noven



fe)=4(%) + (-3)

[ cost + 0-cos2x + ,i_ cosdz + ... }

+ (—l) [siu.r + %sin?.r + isindz + }

3. Express f (X) = X—T as Fourier series in the interval -t < X <7

Sol Let the function X —t be represented by the Fourier series
X—7 =%+Zag1 cosnx+ Y b, sinnx — (1)
n=1 n=1
Then
Sep -1 . Step - 2
f(x)dx==__ (x-m)dx
1 n n 1 T
&= [ . a, ZEL: f (x)cos nx.dx
l n n 1 ¢n
= [L.[ Xax - I dx-h = Jln (x—m )cos nx.dx
_l|— i —| X i n n
= |L0—7t.2j'0 dx|J (-~ xis odd function) ZEH XGOS nx.dx—nI cos nx.dx—‘
1 X |_ T -n J
:E[_Zn (X)oﬂ:'
_1 r0 2 ncosnxdxw
=-2(n-0)=-2r and = njo ax |
Sep -3 (.* xcos nx is odd function and

n

1 ¢n
b = — f i .d
- J:n (x)sin nx.dx

1 = .
= = - .d
. Jln(x T )sin nx.dx

T%||—L2J'0n xsinnx.dx - m (0)—|U

2

%Mj Xxsinnx —7 J:““ sin nx.dx I

|—X(—cos nx ) _,f-sin nx )"

1

T ) T

:;KMJFO)_(OJF

T n

_=2 cosnm = =2 (-1y

T n

_ %(-1)"*1 vn=123...

),
o)TJ

cos nx is even function)

T
sa, = —2]0 €os nx.dx

:_2(sm nx)
n 0

= %(sin nm —sin0)

=%(0—0)=0 for n=1,2,3.....




Substituting the values of a,,a,,b, in (1),

x—m=-m+) (-1 "2 §in nx
We get, " T
1 1. 1. 1
=—T + 2] Sin X—=sin 2X + =sin 3Xx — =sin 4X +...... |
L 2 3 4 |
-t —n<Xx<0
4. Find the Fourier Series of the periodic function defined as f(X)z{
X O<x<m
1 1 1 m?
Hence deduce that 1—2+§+5_2+ _____ :?
Sol. Let f (x)= %JFZ:% cosnx+ Y b, sinnx — (1) Then
n=1 n=1
Step1: Step 2:
a, =~ (" f (x)dx a =£In f (x)cosnx.dx
A L
1 [} n _l 0 _ “ —|
:—M (_n)dXJrJ‘O de—| - M (—m)cos nx.dx+_[0 xcos e |
‘| 1( (sinnx\° sinnx cosnx )"
_|_() Wl ||L_|\n U T |
TE|L 2) |J - —| 0
_1l45,1 1
ual 2 T| 2 2
Step 3:
1 [(=1)" 1] 1
" ==l—=+=|==[(-D"=1]
bnzlj- f (x)sin nx.dx ”[ n ""] mn*
T Y
= Ino(—n)sinnx.dx+_|':xsinnx.dx—h o la — X rr—awn — 1l

1

'

1 (cosnxj0 ( €os NX sinnx)"
—| | +| —X +—
T U on nooont |

17 T |
:; (1—cosmt)—ﬁcosmc|J
l(1 2cosnn)
n
-1 -1
b1:3,b2 :7,b3=1,b4:7

Substituting the values of a,,a, and b, in (1), we get

f(x):_—n —2(05x+ X 085X )\ (s, SiN2x 3sin3x sindx
™ 5° )

2 3 4

Deduction: Put x = 0 in the above function f(x) , we get




Even and Odd Functions:-

A function f (X) is said to be even If f (—X)= f (X) and odd if f (—X)=—f (X)

Example :- X%, x* +x%>+1,e* +e % are even functions & X3, X,Sin X, cos ecx are odd functions.
Example :-

Note1 :-
1. Product of two even (or) two odd functions will be an even function
2. Product of an even function and an odd function will be an odd function

Note 2:- Ia f (X)ﬂX =0 when f (X) is an odd function
-a

= ZIOa f (X)dX When f (X) is even function

Fourier series for even and odd functions

We know that a function f (X) defined in (—TC,TC ) can be represented by the Fourier series

f (x):%l+i a, cos nx+ibn sinnx
n=1

n=1

l T 1 T
Wh == f d , a =—| f(x)cosnx.dx
ere a, - .L[ (X) X "o J:n ( )

1 .
And b ==| f d
n \ nL{ (x)sin nx.dx

Casel:- when f (X) is even function Case 2:-when f (X) is an odd function

Since COSNX is an even function, since f(x)isan odd

1 n 2 (n
a0=nJlnf(x)dx=;jo f (x)dx

a, :—i J: f(x)dx=0

function

> f (X)COS NX is also an even function. =>» Since COSNX isan even
function, f (X)COS NX is an odd function

[ 1" |
-~ f {v)rne nv Av and




Examples:-
1. Expand the function f (X) = X? as a Fourier series in (—TC,TC ), hence deduce that

11,1 1, .7
12 22 32 42 12
sol. ince f (—X)=(-x)’ =x*= f (X) => f(x)isan even function.

Hence in its Fourier series expansion, the sine terms are absent

.-"':)
.'.x2=ﬁ+2ancosnx )

'
n=1 l"-n.j

Step 2:
a = EJ'1T f (x)cos nx.dx
n Tc 0

2 on
:—J' x? cos nx.dx
T 0

zg[xz[sm nX)—Zx(_Cof nx}rz(—swlnxﬂ
T n n n .

2( COS NX _\
==10+2r ——=+2.0
Tl n? ]
_ 4cosnn :A(_l)n

n2 n2

Substituting the values of a, and a, , we get



XZ—TE2

3 + i r;iz(—l)n coS NX

TC - _)n+l
- Z COS NX
-3 el
2
- —C0S2X C€0S3X C0S4x
3 4| cos x > + TR, +——=
Deductions:- Putting X=0 in (4), we get
O_TE_2 4 1—i+i— 1 ___
3 22 32 42
INTIE S S S i
2232 42 12

FULL RANGE FOURIER SERIES [Interval of length 21]

The Fourier series for the function f (X) inthe interval  [c, € + 21] is given by

[f(x)_—°+ faCos—+bs ”“X”

ni\ |

Where{""oz%f:mf(x)dx 1 % TE 100 Cos " ax } Lbn=%jc°+2'f(x)3in@dx }

Remember this formula as
this carries 6M Problem.

C=0 > [0, 21

[ f(x):gz‘)+i( s X, %U
N7

2l
f(x)CosnTde & bnzlfof(x)Sianx

Where aozllj.omf(x)dx , a |

" I

Remember this formula as
this carries 6M Problem.

C=-l > [ 1]

{ f(x)= i(a Cos—+bS L)

1 1 . NTIX
where a,=7[\ f(9dx & =7[ f0ocos™ax & b =7 f(X)Sin==dx

Examples:-

1. Express f (X): X? as a Fourier series in [—I A
Sol f(=x)=f (-x)’ =x2 = f (x)

Therefore f (X) is an even function

SEE FOR EVEN OR
ODD FUNCTION AS
THE INTERVALIS
FROM — VALUE
TO +VALUE

Hence the Fourier series of f (X) in [—I,I] is given by



f(x)_—+Zayq cos X

2 f (x)cos NTLX 4x

where a_
| Jo |
2 [ 2( )"
hence a, :L'fo dele _) =2l
(3), 3
also a, %ﬂ; R(KQ&de sin(M —cos X sin 1EX ]
Il I _2 X2 I —2X ' +2 i
zi— cos% L I e RN
= |_||2X n2m 2
[

Since the first and last terms vanish at both upper and lower limits

o = 2| o Cosnm _ 4l*cosnn
"7 nm?/1P] n’n?
(1) 412
Tt

Substituting these values in (1), we get

I & (-1) 41 cos X

2 _
X% = 3+n:1 o I
2 - n+1
:I__4_|22 (- 12 cos X
3 T n I
1A cos(mx/1) cos(2mx/1) cos(3mx/I)
3 x| o o2 Tz TTTTT

Find a Fourier series with period 3 to represent f (X) =X+ X" In (0 3)

> (a cos—+b sin —) - (1)

Sol. Let f(x)=—" Z

1

Here 2| =3, 1=3/2. Hence (1) becomes
f(x)=x+x
% +hb_ sin 2—xj—>(2)

21
Where a, = %L f (x)dx

2P )dx_—[—+—3]3=9

and a, ——f f(x)cos(Tx)

——J' (x+x° )cos(

j Using bracketing method, we obtain



b, :Ilj'oz' f (x)sin %dx = i J':(x+ xz)sin(

Substituting the values of a’s and b’s in (2) we get

9 9 &1 2NT X 12 &1 . (2ntX
X+x2="47 = cos| — |- Tsin| /—
2 “2;1”2 ( 3 ) T nZin ( 3 )

2nnx}dx
3

Half —Range Fourier Series (Interval of length I) = [0,!]

Remember these
formulae as this carries
6M Problem.

Part - B [3Q - (b)]

The Cosine series The sine series
f(x)=%+ZaH.COSn—TX £(x) :Zb”'Sinn_TX

Where Where
a0=|3j; f(x) dx bn=%j;f(x).sm@

20 NmX
a, = I_-[O f (x).Cos E

Note:-

1) Suppose f (X) =Xin [O,TC ], it can have Fourier cosine series expansion as well as Fourier

sine series expansionin [O,TC]

2) Iff (X) =x%in [O,Tc], can have Fourier cosine series as well as sine series
Examples:-
1. Find the half range sine series for f (X) = X(n — X) in 0< X< . Deduce that

Ans. The Fourier sine series expansion of f (X) in (O,Tc) is

i_i+i_i+____:Tf_3
¥ 3P 5 T 32

Half range =

(0,I) means (0,7t

)



f(x)=x(n—x)= ibn sin nx
n=1
2 (" .
where b, = ;L f (x)sin nx.dx

hence b, = %[: x(m —x)sin nx.dx = %L (mx—x? )sin nx.dx

:i{(nx_xz)(_cc;snx]_( oy )( smnx) (_2)%}:
Z[ 2|
- (y)

IO, when n is even

" (8? when n is odd
7n

x(m-x)= > —smnx (or)

Hence n-136.. TN’
x(n—x)= %(Sin X+ 5|r313€’>x + 5|235x +————)—> @)
Deduction:- Putting X :EZ in (1), we get

x-Z|=8[sin® 4 Lgjn3r  1gnSm
2) m 2 3 2 5 2

2
=8 1+ism( n\+isin o+ +isin 3n +£\+———
4 = 3 2) 5° 2) T 2)

Hence

N 1A

a

11,1 1,
¥ 3 5 7 32

2. Find the half- range sine series f(n n 0| X
Ans.  The Fourier sine series of f ) 0| is glven by f(x)=1= Z b sin—=

n
n=1 I

5 o T ()sin 2 dx

\ Jo



2[ ¢ '
Tl TL

ni —cosnr +1)
- nzn (-1 +1]

-.b, =0 whenniseven

= i, when nis odd
nrt

Hence the required Fourier seriesis f (X): Z —sin -,
n=1,3,5——

3. Find the half — range cosine series expansion of f (x ): sin (ij inthe range 0 < x<|

8, < N
Sol.  Half Range Cosine series in (0,l) is given by f(X) = ?4- Zan.COS |
n=1
2
o of (x)dx=“ | gx
1

I—josin de

:g[—comx/lwI
1Y R

_2 coswt —1 _—and
|
f (x)cos nm X dx

where a, =

0

—_ o -

[ cos(n+1)mx 1!

1 | +COS(I’]—1)TCX/| \
I (n+1)n /1 (n-D)m /1
] I

v, L]

|L n+1 n-1 n+1 n- 1h

When nis odd



a =0

n

1] -1 1 1 1
nLn+1 n-1 n+l1 n-1

When n is even

1[ 1 1 1 1]
a =— — + _
" mln+l n-1 n+1 n—lJ
~ —4
~n(n+1)(n-1)
___sin(n_xj:_z_ﬁ cos(znx/|)+cos(4nx/|)+____1
') n = 13 35 J



Assignment-Cum-Tutorial Questions

SECTION-A
1V ion
(1+2—X -t <x<0
) o= . .
1. If f (X)—{ Then f(X) is function [ ]
2%
tl—— 0<x<m
T
a) Odd b) even c) periodic d) none

2. If the Fourier series for the function f (X) defined in [—TC,TC ] then an =

3. The Fourier constant b, for f (X)z Xsinx in [—TC,TC] is
4. If f(x)=x%in(=L1) thenay & by are

5. If f(x)=|x| in(—m,m)then a; & biare

6. In Fourier expansionof f (X)= X+X? in (—TC,TC) the value of a is [ ]
2 4 n
a) F(_1)4 b) F(_l) c)0 d) none
7. 1f f(x)=xcosx in (=, 7 ) thena, is [ ]
a)l b) 2 c)3 d)o
8 If f (X) is expanded as a Fourier series in (0,275) then a, = [ ]
1 r2n 1 ¢n 2 ron
a) [, fed b) = REOLE o [ T()dc  d)none

9. Fourier sine series for f(x) = x in (0,m) is

10.If f(x) = sinxin-w <x <m thenay =

11.in Fourier series expansion of f(x) = coshx in (—4,4) the Fourier co efficient a; is

12 f (X) is expanded as a Fourier series in [0, 27t]then b, =
[ ]

1 f2n 1 ron .

a) EIO f (x)cos nx.dx b) EL f (x)sin nx.dx
2 2n .

c) - IO f (x)sin nx.dx d) none

13. 10. If f (x):1+sin X in (-1,1) is expressed as a Fourier series then the Value of b,

= [ ]
a)o b) 1 c)2 d) none




ECTION-B

1) Level Two Questions:

2.

10.

11.
12.

13.

14.
15.

if0<x<m

Obtain Fourier Series for the function f(x) = {2;'_ x, if m<x<2n

And h ded thtTcz 1+1+1+
n ence dedauce al —=—+—F 1T —
8 12 3 5

Obtain the Fourier series to represent x — x?in ( -1, m) and deduce that

12 12 22 3

2 | o n?_1_ 1.1
If f(x) = x%, - [ < x <l. Obtian Fourier Series and deduce that 12 = F ? ?

Expand f(x) = e as a Fourier seriesin(—1,1).
Obtain Fourier series to represent the function f(x) = | x| in ( -r,m)and deduce that

2
n_:£+i+i+

g 12 ¥ 5
Obtain the Fourier series expansion of f(x) given that f(x) = (1 —Xx)?in0 < x < 2w and
deducethat1/12 +1/22 +1/32 + ........... = 2/6
Find a Fourier series to represent the function f(x) = e* for-m < x < m and hence derive a

series for m/sinhm

T, TnT<XxX<T

Find the Fourier series of the periodic function f(x) = { _x 0<x<m

Hence deducethat L+ 1 4+ 1 4 ... . ... .= ﬁ
12 32 52 8

Find the half-range cosine series and sine series for f(x) = xin 0 < x < m hence deduce that
2

|
+

|
+

|
+

|
+

Il
oo|':'

2,-2<x<0

Find the Fourier series expansion for f(x) = { x0<x<?2

Find the Fourier series expansion for the function f(x) = x —x 2 in (—1,1)

Show that the Fourier series expansion of f(x) = 1 in 0<x<1 and f(x) = 2 in 1<x<3 with f(x+3) =

q ] 1s 1t 1 ) 3 \r 1
v | - v )
1 o8 ey ' - Sin | sin Xt x4

f(X)iS y 4| 2 L2 3 4| 2 2 4 (DEC2015)

kx,0<x<
!

!
Find the half-range cosine series for the function f(x)={ 2
k(l—x),5<x <1

Express f(x) = x as a half range sine seriesin 0 < x < 2.

Find the half-range cosine series for the function f(x) = (x — 1)%?intheinterval 0 < x < 1

2
Hence show that }%_, ﬁ = %
—



SECTION-C
C. Questions testing the analyzing / evaluating ability of students

Level Three Questions:

1. An alternating current after passing through a rectifier has form j =

Find the Fourier series of the function.

(lsin® 0<B<m
10 n <0 <2n

2. Find the half period series for f(x) givenin the range (0,L) by the graph OPQ as shown in the following

fig.
Y4
P(a d)
f(x) : )
/ fxd
T Hhnt, f(x)= a
Qd ? d(l-x)
o) i (. o) »>X -
x™a ! I-a

Gate Previous year Questions :

2016 Let ffx) be a real, periodic function satisfying f(—x) = —f(x). The general form of its Fourier
series representation would be
(A) f(x) = ag + Xi_; aycos (kx)
(B) f(x) = X, bysin (kx)
(C) f(x) = ap + Li—, azx cos(kx)
(D) f(x) = T¥-0@aps15in (2k + 1)x
2015
The signum function 1s given by
x
) (—.: x=0
sgn(x) = { ||
l 0;x=0

The Fourter series expansion of sgn(cos(t)) has

(A) only simne terms with all harmonics.

(B) only cosine terms with all harmonics.

(C) only sine terms with even numbered harmonics.
(D) only cosine terms with odd numbered harmonics.

Options :
1. % 4
2 %B
®C

4 ¥ D



2012 Let x (t) be a periodic signal with time period T, Let y(t) = z(t — &) + =(t + to)

for some #). The Fourier Series coefficients of y(t) are denoted by b.. If by = 0

for all odd k. then f; can be equal to

(A) T/8 (B) T/4

(C) T/2 (D) 2T

The Fourier series expansion f(f) = ag+ f:u,.cos nwt + b, sin nwt of

the periodic signal shown below will confain the following nonzero terms

2011

i)
[1]] lﬁ [1[T .,
0
(A) ay and b,,n=1,3,5,...00 (B) ay and a,,n=1,2,3,...00
(C) aga, and b,,n=1,2,3,...00 (D) ag and a, n=1,3,5,...c0
2010  The period of the signal xz(t) = 8sin (0.8t + %) is
(A) O4m s (B) 0.87 s
(C)125s (D) 25 s
2009
The Fourier Series coefficients of a periodic signal =(f) expressed as
z(t) = :‘z_xmeﬂ’“” are given by as=2-jl, a ;=054 0.2, as= 2,
ay=05- 0.2 a;=2+4j1 and oy =0 for |k|> 2
Which of the following is true ?
(A) «(f) has finite energy because only finitely many coefficients are non-
Zero
(B) x(t) has zero average value because it is periodic
(C') The imaginary part of x(#) is constant
(D) The real part of z(f) is even
2008

Let z () bea periodic signal with time period 7', Let y(t) = #(t = 4) + 2( + k)
for some ;. The Fourier Series coefficients of (1) are denoted by b . If by = 0
for all odd k. then t can be equal to

(A) T/8 (B) T/4
(C) T/2 (D) 2T
2007

A signal z(f) is given by
1.-T/4< t=3T/4

z(t) =]-1.3T/4 < t<TT/4

—z(t+ T)
Which among the following gives the fundamental fourier term of x(f) 7
4 osf Bt T Topnn{ XE 40
(&) zeos{r 1) (B) geo5(31+7)

4 . (Eb_® G R ¢ T A
(C) ?bm(T 1 (D) 4blll(2T+-l)




UNIT - 1

MATRICES




Rank of a matrix: Let A is be an matrix .If A is null matrix , we define its rank to be O (
If A is non zero matrix ,we say that ‘r’ is the rank of A if

(i) every (r+1)th order minor of A is O(zero) and

(i1) there exists at least one rth order minor of A which is not zero

Rank of A is denoted by p(A)

Note:

1) Every matrix will have rank

2) Rank of a matrix is unique

3) p (A) 1 when A is a non-zero matrix

If A is a matrix of order rank of A= p (A) min(m,n)

5)If p (A) =r then every minor of A of order r+1 or more is zero

6)Rank of the identity matrix Inis n

If A is a matrix of order ‘n’ and A is non-singular (i.e; det A 0) then p (A)=n.
8)The rank of the transpose of a matrix is the some as that of the original matrix(i.e; p (A)=p

9) If A and B are two equivalent matrices then rank A= rank B

vV V.V VvV vV V. vV V. V. vV vV vV v v VY Y

10)if A and B are two equivalent matrixes then rank A = rank B.



-1 0 6
Findthemnkofthemau'ixA=[ 3 6 1]3:3
-5 1 3
ol Det A of ziven matnx (A) = -1(18-1) - 0(9+5)+(3+30) = -17-0+198
= 1810
A 15 non — smgular third order matrix
rank of A =p (A) = 3 = order of given matnx.

1 —2 -1
E}Finl:lﬂ.n]cnfﬂlemah:ix[—ﬂ 3 [}]
2

2 +
Sol:- det| A = (A) = 1(12-0) — (-2} (-12-0) -1(-6-6)
= 12-24+12=0
. A 15 simgular

Let us take a submatrix of given matrix

1 -2 = =

B=[ ., L ]=Bi=36=-32%0

Fank of given matrnix = submafrnx rank = P(A) =2

— - — R




Echelon form:-

The Echelen form of a matnx A 15 an equivalent mainx, obtained by finite number of elementary
operations on A by the following way.

1) The zero rows, 1f any, are below a nonzero row

Y The first nonzero entry in each nonzero row 1s one (1)

3) The number of zeros before the first nonzero entry in a row 15 lessthan the number of such zeros
in the next row immediately below it.

Note:- (1) Condihion (2) 15 optinal
{11} The rank of A 15 equal to the number of nonzero rows m 1ts echelon form.
Solved Problems:

1 2 3
1) Find the rank of the matrix by echelon form ’1 4 2]

2 6 5
1 2 3
Sol:- Givenh=h 4 E]

6 2
F:—E,-B;: R:—R:-2R,
1 2 37
~10 2 -1
0 2 -1
B:;—F:-2R,
1 2 37
~|0 2 -1
0 0 0.




F p (A) = Bank of A = number of non zero rows = 2

4 2 3
E}Finﬂihermkufthematﬁ,j 4 & ]
2 —1 —15
4 2 3
Sol - Given A = [H 4 ] ]
—2 —1 —15
R—i —}RE—IR]_ - R;%E;-I-Rl

4 2 3
--[g Q {}] . Rank of A = p (A) = Number of non zero rows = 1
o o

1 1 —1 1
3) Find the value of K sach that the ramk of A = [1 -1 k —1]i51

3 1 ic 1

1 1 —1 1

Sol:- Given A = [;_ —1 K —1]
1 i0 1

R: —R2-Ba; Bs—Rs-3Fa

1 +1 —1 1
_[g —2 k+1 —J
-2 +3 —

F:—F:-F,

1 1 —1 1
_[g —2 k+1 —2]
o —k + 2 o

Give rank of A 1s 2, there will be only two non zero rows
- Third row must be zero row — 2-K=0
=K=2




Normal form:

Every m x n matnx of rank r can be reduced to the for [ Ir 0] or Ir or (3) [fl;- g]
by a finale number of elementary row or column fransformations. Here ‘1’ indicates rank of the matnx.

Solved Problems:

2 3 7
1) Find the rank of the matrix by using normal form where A=’3 -2 4]
1 -3 -1

3 7
Sol:- G‘i"i."-Eﬂ.é!L=E -2 4—]

-3 —1
Ei+—R;
1 —3 —17
-3 -2 4
L2 3 T
E.z—} E.g - 3R| ; E.3. —}Ea.—m]_
1 —3 —1]
- |0 r 7
L) 9 o .
Co — Gy +3C,; G —=C3+0C,
1 0 0
A ’l} Fi ?]
g 9 9

Rz—}Rz;,Ra—}Ra-—i

1 @& 0
- "ﬂl 1 1]
0 1 1

B:— B3 — E.gl




L:d
Bz
=5

Fankof A —=p (A)=1r =2 = un:it mmam= ocder

1 = —
23 Find the rank of th= marmix E o 2 Sz] by usins Dosxo=al formo
1 3
1 2 —
Sol:- Gaven A& = = AL e s
e FIORE-- 1
C.@)Cz
o MR- - —=
A —jo & =2 s

1 =2 = 3
R —R,.—FR.

28 &
— {0 4 2 6

Cs—)Cs—2C.C‘—>co = 2C 4

> o o
— o0 4 —&8 s
=z —3
R, —=2R, R.
s 5 o o
— {0 a4 —s s
o O
Cz—) c-. -l

-
i1 0o ©
—jo 1 —s E]
o o ©O

Ch—Catr 0t Ca —» a —0CS

Fankof&A=pdaA)y=x= 2




Imverse of Non-sinzular matrix by Gauss — Jordan method:-

We can find the ioverse of a nop-singular squars mamx using elementary row opsrations only.
Suppose A 15 3 ponsingular square martris of arder o we write A= LA
Now we apply elemantary row operations ooly to the mamx A and the prefactor [ ofthe R H.S. We
will do this oll we gt an eguation of the ﬂl:mI.=EA_’['IJma]:niiun51].'His the imverse of A

lijﬂﬂumundeMm[z ﬂwmm—mw

ilf“f:‘E ﬂ
L

H.|'H'R=

1 1 1 0 1

IE -1 IEJ = ll a ﬂ..r'!.
1 -1 o a
H-:—:"H-: 2R, Bs;— R+R,

=E ML R

n;—} n;.['T‘}




1 1 1
[n 1 —:L,.r:;]=[1,.r3: z,.r:a: |:: A

o —z o o
R,—F,-F.: R =R +30_

1 0 473 1,3 173

[n 1 —1__.-':3] = |—1s3 2s3 H

O 0 —273 —25F 173

Ra—sF3(-3/2)

1 0 473 1,3 1,3 a

[n 1 —1__.-:3] = |—1s3 2s3 .},'zl _A
o a 1 1 —152 —

B,—F. — 43 B, H:.zﬁ-E;_-l-l.'H P

1 0 —1 =
[n 1 ﬂ [ —1,2| . A
o o —1,.-2 —3

1 =2
I, .=B A where H= [ﬂ 1,2 —1,2 is the myerss of siven muatris.
1 —1y52 —3

Fxercize:
Find the inverse of the followines matmnm=es by using Gangss — Jordan meethosd

1 2
1) E 4 5
= &
—2 1
N a -1 EI
1 2
-1 —F 3 —1
1 1 —1
3) \3 -5 2z —3‘
—1 1 o 1

- - - = m . - - E -




Solution of linear System of equations:
An equation of the form 2 X~ A%, =2, % ... fax.=b.. ... (1)

Where x,,%;...., %, a2 unknowns and a,.2;......, 2., b are constants 15 called a linear equations in o
unknowns consider the system of m lmear aquations i o unknowns .

B, By 25 ZIVen Delow
TP 0 To0 SR - T 2 ) |
ORE Tl PoL o L A b2

AR T Ak ... FApaRe = L {2
whereazj'sand b, b ......... b, are constanes. An ordered n- maple (%, .%. .. ... % ) sansSHins all
equanions i (2) 1s called a solunion of the system (2)
The Systam of equatons m (2) can be wniften in mam=x Som A X=B 3)

Where A =[aij]. x = (%182 ... . %) . B=(b; b2 ... D)’

Thes Mamix [AB] 1s called the augmenrted matrix of the system{2)

If B=0 1n (3), the systam s saxd 1o be Homogeneous otherwise the system i1s said to be non —
homozensous

* The system AN =0 is always consistent since N =0 (e =.=0, x=0, .... X.=0) s always a solution
of AN = 0 Thas soludon is callad Tooval solution of the system.

* Given AN = 0, we ry 1o decide whether it has a soluton X = 0. Such a solutton. if exasts_ is callad a
non-Trnival solution

* If there 1s 2 J=ast ope solution for the =iven system is said 1o comnsistent if the system does not have
any solutdon, the system is said rto be inconsistent

Solution of Non-homogeneonus systemn of equations:

The syvstem AN=E8 is consistent 1 2 _ it has a soluton (unique or infinite ) if and only if rank A = rank
[AB]

1) Ifrank of A = rank of [AB] = r<n then the system is consistent and it has infmirely many
solunons. There r = rank, n = pumber of unknowns in the systam.
i) Ifrant of A = rank of [A'B] = r = o then the syvsrtem has unique solution.

i) If rank of A= rank [A/B] then the system is mconsistent i e It has no soluton.




1) Solve ths system of egquations xX=+2y+3z—1. Zx+37-8z—2 . x+v-—==3
Sol: Gven systen: can be wrirten in mam=x form

Auzmenrad mam= of the Ziven system
o '=F 12

[ABI= 2332]
I ¥ 3

B—FR2R,;. R«—R, R,

I 2 3
— [g —17 2 0
—1 -
E.—R R
I 2 3
— [z —1 2 o
o —=
-. rank of A = rank [AB] =r =3 = numbesr of unknowns =n
.oa=xr=3

~. The ziven system is consiseent and it has unique solution. The solution is as follows from the last
augmented Matris We Can write as|
“4z=1 y+2z=0 x+2y+3z=1
2z=y x=1-2y-3z
A=y =1201)3(
s — 3
=-1 -l+2-¢?
X=0e2
. The solution of given system : x=92; yv=-1.z=-12




2) Solve ghe system of equations w2y-z =14
Ix~2y-z=11
2x+3yz=11

Sol:- Given system can be wrirten In mamix form as

kel B-E

neumaedmm:of&egxmsyma

¥ X9
[AB]=1|3 ¢ 2 1;]
3 1 1
R —FR.-3R,. R,—R,-2R,
2 2 .1 147
=2 =Z2=2
.3 ¥ =1

R—2R R
I 2 P 147
-0 =2 =2 =31
o 0 -0 -3
Rankof A=2=3=rank of AB

. The Ziven system has no soluton. 1 .e.. the system is inconsistent
3) Show that the system x+y-z=5. x-1v=-3z = 14, x+~2y-7z = 30 are consistant and solve them
Sol:- Given systam can be written in matrix form as

IR




= |
ok

s
euo-j" O b b
Y o,

4 4

rank of AB =r=2 < 3 = n= mumber of unknowns
. The system has consistent and it has mfinitely many solutions.

Here x+y+2=6
Y+2:z=8
Latz=k
y=82r8X%
5 =6-v-z
=6-(3-2k)-k
%= 6-8+2k-k
%=k-2
. The system has infimitely many solutions x=k-2; y=8-2k. =k




P) For what values of 5. and u the system of equanons
Ix+3y=5z=9 have (i} no solunon
Tr+3y-2x=8 (d) unique sokution
Ix+3y-iz=u

Tl

The aumarented marmx of Ziven system

2.3 =)
wnfis >4
3 2

R—2R-7RI.R,—R.R,

2 3 5 9
5 [o —I5 -39 -47]
0 0 i—5 u-—29

R,—R1D

T 3J2 32 82
- [‘0, -15 -39 —47]
g 4A-35 u-—-29
Case 1l 3=5 p=°
Then p{A)=2.p(AB)=3
p(A)=2=3=p (AB)

The system has no soluton

Case 2:- 2325, u=0

Then p (A) =p (AB)=r1r—=3

. The system has unique solution

Case 3: 3=5, u=0C

Then p (A) = p (A B)=r=2- 3=p=number of unknowns




Consistency of system of homogeneou: hinear equations:
Consider of system of homogeneous Imear equagons in n unknowns namely
3,,5,72,.8,~.....7, % =0
A% T Akt Ak =0

S I TS S - S ) |

This system can be wnitten In mamix form:

clx a‘z "EE s c-“
B—vx a':l maa s ah }
an‘laml o

0
1. IfmnkofA-n(mLmoerofvmables)
=0 The system of equations have only mivial solution (ie . zero solution)
*3 If r<n then the system have an infinintive mumber of non tmivial solutions.




1) Find all the solutions of the system of equations
X=2y-z=0. 2x+y-z=0, x-4y=5z=0
Sol. Given system can be wrinen it matrix fonn

1 2 - 0
r IERE | 1 Y=
53 B
Ausmentad matnx
1 2 I
[A.B]=[i I 1 g]
- 5 0
R.—FR-IR,:R,—R,-R,

1 2 =1
- g -3 3 0
-6 & @

1 2 =1
= b -3 3 0
2 0 @

Rank of A = rank of AB = r = number of non zero rows = 2<3=p= number of variables
. The system has infinitely many sofutions from the above maoix

-3y+3z=0 ==2v-z=0

=¥y=

Let us consider n-r=3-2=1 arbirrary constants

letz=k theny=k

Since x+2v-z=0
= %=z-2¥%

= z.}y
=x-2%

=K




1) Solve the system of equations x+y+w=l; v+z=0, x+y+z+a=l, x+y+1z=0
Sal: Given system can be written in matmix form

O O

@ b b
ey

e e
[==1
N

.R\._'_
i
0
0
0
-1R
i
0
0
0

L= =]
o

[ S .
|
[

F.|—:|'R'__F..|

[
b=

1)
0
0

L=

L= = B

o
o

[ S S

0

ke

Fank of 4 = Fank of AR =1 =J=p= pumber of unknowns
. Therefore there is po non=zero soluton
- %=y = r=w=0 is only the trivial selution.

B e a3



Matrix- A set of mn real or complex numbers or funcnons displayed as an aray of m honzomnsal lines

(callad rows) and n vertical lines {callad columpes) is called a mam= of order (. n} or 1 x = (read as

m by n ) The oumbers or funcoons are callad the elements or entries of the matnx and are enclosed

within brackests [ J or ()

Matrices are denoted with capital lesters & B | T _& =lements are denoted with smmall letters a b . ©
Iemasxandjareusedaaaﬁusonthea.b.c mdmaxetowmdcohmnsposm

tespecuveh of the comresponding entyy .
Thus
all Gz Gy QG
a‘zz.. a?)_. (= — e
A=(m_ﬂ- a.; B | Gy . a.-..] whare 1= 1=m
aml amz-- avul...amn

I=3j=n

Is a matmix with m rows and n columns

Types of matrices ©
Real matrix: A mamix whoses sleammenes are all real pumbers or funcoon 1s callaed 2 real mamix

SR 02] e ¥
il = m— -
Z 2l 3

Complex matrix- A matmx which conmains at least one complex numbers or funcizon as on 2lemenr 13
callad a complex maoix

= 3] -I5 37

Row matrix: 4 mamx with only on=s row is called a row matix or Tow vector I is a mam= of order
1 x m for some posIiOve infegsrn

Ex[-370211]:[748]

Column matrix: 4 matrx with only ope column is called a columm matmx or column vector Iris a
matmx of order m x 1 for somes posmive integer m




(3] = [3]

Sguare matrix A mamx in which the oumber of rows and the mumber of columns are agual 1= called a
sguare matax

o 5
=& & |3 5 ]

A sguare mamx of erdar n < i 1s simply descobad as an n- square matix
Diagonal matrix: A square marmmix [20j] with aij — 0 forf = j is called 2 diagonal mamix

~B331<F 3% 30583

Scahrm&mA@gmﬂmmchmﬂ&eehmﬁmequﬂm&mgmﬂualhd

==[os0] . B Y

Zero or null matrix - A mam= m which every entry 1s =710 is called a zero mamix or oull mamix and 1s
denos=d DV o.

EX 0z = [ o] .03.==1[001

Tnit matrix (or) Identiiy matrix “ 4 diagonal matrix m which all the diazomal elements are =qual to
unity or 1 1= called unst mamix (or) Identity mamix and i1s depoted Dy L

S3: I -
Ex:I o 3 g] . I= ‘:ﬂzu
P )

Rectangular matrix: 4 matix in which the numbers of rows and the numbers of columms may not be
equal is called a rectangular manrs .




Transpose of a matrix: The matrix obminad fom any Siven mam= A, by interchangzing its rows and
cplumns is callad the transpose of A and it is denoted by Afor A7

123
Ex: A=[456]
7809

147
A'=[2 5 8]
36 9
Propertes of ranspos=s of a mamx-
If A" and B” be the mansposes of A and B respectively . then
D @A) =a
2) (A+B)'=A=B", A and B being of the same order
3 (KA) =K A" Kisascalar
4y (AB)" =B'A' A and B bemgz conformable for multipication

Trace of 2 square matrix : The sum of the elements along the mam diagoral  of a square mamy A
15 callad the mace of A and written a3

Trace( A= aiagt... . A

Tr{AFLRL, 6y

Propernes of racz of A

Tr(KA) =K TrA), where K is a scalar
Tr(A-B)=Tr(A)=Tr(B)

Tr(AB) =Tr(BA)




Afinor and cofactor;)
Lat A={aij],,... be a square mamix when from A the elements of i™ row and j*
column are delered the determinant of (n-1) rowed matmx M_is

called the minor of 2, of A and is denoted by |M,]. the sizgned minor (-1)'7, | M, 25

callad the cofactor of 2, and is denoted by A,
Ex:

123
letA=[456]
7 8 945

Minor of 1 is ={(5 x 9) — (6 x 8)|
=45 — 48]

=|-3|=3
Cofactorof 115 (—1)

Adjomt of a square matrix let A be a sguare matnx of order o _The
transpose of the mamix got from A by replacmz the elements of A by the
corresponding cofacrors s called adjoinrof A and 1s denoted byad; A .
Singular & non singular matrices:

A sguare mamix “A’ is said to be singularif [4] =0

If 4| = 0 then A 13 saxd to be non-singular .




Invertible maftrix - A square mamx A is said 10 be mwearnble if there exasts
a matrix B such that AB=BA=T is called an inverse of A

Note:
1} A matmnx is said to be invernble if it posses mverse

2)Every myvermible mam= pOssesses a unigue 1Inverss
The= inverse of a mamx if it exists s unmique.

3) TheinverseofAisdenocteby A'thus AA™' A'A=7
4) K A™ an invertible mamix and if A=B then A™' =B~

5) I |A| = Othen A= (adj A)

Symmetric matmx - AsquaremixAﬂa’]issa'ul to be symmedric if a,-a; forevery _iandj
thus A is symmerric mamix if A=A" (or) A'=4
123]

E‘IZA=[234
347

1z
A-=[234
347

~A=A"hence A is symmetnc.

Skew —symmetric - Asqummauix!.&qa..]isnidtobeskewdsymme:dcifa.-a, foreveryviandj

Thus A is skew symmemic < A=A"|

0 a —b
Ex:Let A=[—a c ]
b —c 0

0 —a b 1] a -—b
A'=[ a o - ]-—[—a 0 c ]-—A 1
—-B c 0 b —¢ 0

~A'=-A> A=A"
~A 15 skew —svVIImeTic




Onhogo?lnlnu'ix:AsqnaremuixAisnidmbemgnwifAA'=A'A=L

Thais A=A

Conjugate of a matrix: The matnx obtainad fonn any Ziven mamx A on replacing 1ts element by the
comesponding conjuzate complex numbers is called the conjugzate of A and is denoted by A

af2 3 2-5i 12 —3i 2+5i
e A B F S S

The ranspor? of the conjugare of a sguare mamwix

If A is a square matrix and its conjugate is 4 | then the transpose of A is (4)'. It can be =asily seen that
(£)'=(A7). The transposed conjugare of A is denoted by 4%

A%=(A)'=(A").
Note :
1) (A%=A
)] (AiBz" =A"+B"
)

3) (KA =~KAuu-eku.mu-
%) (AB)" =A"B"

Hermitiam matrix: A squars marmrix A such that A'™= 4 or {4)"=A is called a Hermitian marrix .
Bwias, 55 T 57
T % 1-—3i T 4 1-—-3i
"'I_[]_+El-i 7 i] &A_[l+3i 7 []
A=A

-~ A is herpoifian




Skew —Her mifian matrix-

A sguaremamix A suchthar A= "3 or (4 = A is called a skew-Hermitian mamis

AR 2

s +: —i
_r 3= 2__3 R S
=l : 1-a=315% =3y |

@=L, 577

. ’3_!_ 2 —Zf— i]

~@D'=-a
- & 1s skew —Hermanono

Tnitary matrix - A squme rman:x A is saidto be unitary if 4. 4 = 2. 43 = 1.




Gaus: elimination method:-

This method of solving a system of o lner equations in n unkpowns consists of eliminating the
cozfficients in such a way that the system raduces to upper mangular system which may be solved by

back substiition.
Problems:
Solve the equations x+v+2z=§, 3x+3y-4z=20, 2x+y+3z=13 by usinz Gauss elimination method.
Sol marix fom of the given system
| S8 g9 X 0
SRR
i 3 3
Augmentad matnix of the given system
[ABl= L 3 4 "0
2 3 I3
R..«—)R,.-BR, R, —F - 2R,
2 2
— 0 o 1 g]
o —2 1 1
(e & R 6]
= o —1 1 1
e 0 1 2
Clearly it 1s an upper mangular matnix fom thas by back substitution.
=2 =1 xry=z=06
=-I=y ==05-v-=
2-1=v =6-1-2
T=1 =3
. w=3 =1 =2



Gauss Seidel iteration method:

We will consider the system of equations
AT = by ("
2:%; T An%et Ak =0; =
A% T ARt AR =0 o

Where the diagonal coefficients are not zero and are large comparad to other coefficients such a systen
is called a "diagonally dominant system”

The system of aquations (1) can be written a3

x:-—‘f-" [b‘:ﬂ];xﬂuxgl ............ (4)
t:’t [(or-anman®s) ... (3)
s% | R R NEETY, [ (6)

Let the initial approximate sohationbe x,"", x."". %, are zero Substitute x.", %, in (4) we get
% = 1/ay; [0r-242%:"-25%,"] thus 1s taken as first approximarion of %,
Substirute x, . x," in (5) we get x;' =12, [b,-3,.%,"-2,%,°]

Thas is taken as first approximanon of x, now substitute %,' %' in (§). we get

% =1y bay s, ]

Thas 1s taken as first approximation of x,confinue the same procedure untl the desired order of
approxumation is reachad or two successive iterations are nearly same. The final values of %, %;.%,
obtamed an approximate solution of the given system



1) Use Gauss-Seidel iteration method to solve

10s=y=-z=12; 2x+10y+z=13. 2x+2y+10z=14

Sol: Clearly the given system 15 diazonal by dominant and we wrnite it as
s=—{12-y-2) (1)

» e

y=5132xz @

z=5(142x2y) ()

First iteration: We start gteration by taking yv=2z=01in (1) we get x,'=1.2
Pux'=12.z=0m{Qwezetv' =106
Putx'=12y'=1063)wegetz' =005

Second iteration now substitutey' =1.06,2' =085 m (1)

' =—(12-1.06-0.95) = 0.699

put x>, z* in (2) ¥ = — (13-1.998-0.95) = 1.005

now substitute %', ¥ in (3) z° =— (14-1.998-2.010) = 0.090

Third approximation: now substitate v°, z° in {1)

x’ == (12-1.005-0.999) = 1.00

Purx’z'in )y’ =—(13-2.0-0.999) = 1.000

Py’ x'in(3)x’'= T‘u' (14-20-20)=100

Similarly we find fourth approximation of x.v,z and got them as x*=1 00, v*=1.00, z*=1.00
Exercise:

Solve the followmg system of equanions by Gauss — sexded method
1) 8x-3y+2z =20 4x+11y-z=33, 6x+3y=-12z2=36

2) x+10y+z = 6. 10x=y+z=6. x+v-10=$
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Eigen Values and Eigen Vectors

Eigen Values:-

Let A = [aij]nxn be a square matrix of order n &\ is the scalar quantity, is called the

1) The Matrix A - Al is called the characteristic Matrix is A where 1 is the unit matrix of order n.
2) The polynomial |A- Al|in A of degree n is called characteristic polynomial of A.

3) The equation [A- Al =0

all—A al2 . aln
e, [ a2l a22—} . azn ] =0is called characteristic equation of A
anl an?2 . ann—A\

Note:- The characteristic equation is of the form (-1)"A" + CiA™+coA"%+.. . +¢n=0

4) The roots of the characteristic equation |A- Al| = 0 are called characteristic roots (or) latent roots
(or) Eigen values of the Matrix A.

Note: 1. The set of all eigen values of A is called the Spectrum of A.
2. The degree of the characteristic polynomial is equal to the order of the matrix.
Eigen Vectors:-

Let A = [aijJnxn, A non — zero vector X is said to be a characteristic vector of Aif A a scalar A such that
AX =X

If AX =X, (x #0) we say that x is Eigen vector or characteristic vector of A corresponding to the
Eigen value or characteristic value A of A.

Solved Problems:
5 4
1 2]
Sol:- Step 1:- Given Matrix A= ° 4]
[1 2
Step 2:- Characteristic equation |A-Al|=0
_ [5 -1 4
1 2—A
(5-A) (2-A)-4=0

10-51-21+A2-4=0
A2-TA+6=0
Step 3:- The roots of characteristic equation is called eigen values or eigen roots or latent values.
A2-TA+6=0
A2-6A-A+6=0
A(L-6) -1(A-6) =0
(A-6) (A-1)=0
A=1,6

1) Find the Eigen values of A= |

1=0
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.. Eigen values are 1,6

o 1 2
2) Find the characteristic roots or eigen rootsof A=[1 0 —1]
2 -1 0
0o 1 2
Sol:-  Stepl: Given matrix A=[1 0 —1]
2 -1 0
Step 2: Characteristic Equation
|A-11| =0
0—A 1 2
[ 1 0-A -1] =0
2 -1 0-A
= -A3+6)0-4=0
A-6A+4=0
Step 3: roots of above egn are called eigen values.
A3-6A-4=0
(A-2) (\2+2A-2)=0
) =2 ) = 2kVAE
) T
A=2,-1+V3
Eigen rootsare 2, -1+/3
Exercise problems:-
2 2 1
1) Find the eigen values A=[1 3 1]
12 2
1 2 3
2) Find the eigen values A=[0 2 3]
0 0 2
-2 2 -3
3) Find the eigen values A= 2 1 -6]
-1 -2 0
. : 1 2
4) Find the eigen values A = [3 4]
Eigen vector problems
5 -2 0
1) Find the Eigen values and Eigen vectors of the following matrix A=[-2 6 2]
o 2 7
5 -2 0
Sol:  Stepl:-given matrix A=[-2 6 2]
o 2 7

Step2:- Characteristic equation |A-Al| =0
5—-1» =2 0
[ 2 6-12 2] =0
0 2 7—A
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(5-1) {(6-x) (7-1)-4} +2{-2(7-1) -0} +0=0
-A3+18)2-990+162=0
A3-1812+99)1-162=0
Step3:-(A-3) (A-6) (A-9)=0
2=3,6,9
..Eigen values are 3,6,9

Step3: Eigen vectors
1) Eigen vector corresponding to A= 3 [A-Al]x =0; [A-31]x =0
5-3 =2 0 x1 0
[ -2 6-3 2 ][x2] =1[0]
0 2 T7—-3 x3 0
2 -2 0 x1 0
[-2 3 2][x2] =[0]
0 2 4 «x3 0
Using Echelon form
2 =2 0 x1 0
Ro—>R+R1[0 1  2][x2] =[0]
0 2 4 x3 0
2 =2 0 x1 0
Rs—>Rs+2R1[0 1 2] [x2] =[0]
0 0 0 «3 0
Rank =2 = no. of non zero rows

N = no. of unknowns (or) no. of variables n =3
r<n = n-r = 3-2 = 1 we choose one variable to the one constant.

2X1-2%2 =0
X1+2x3 =0
let x3 =k

2X1 = 2X2 = 2[-2Kk] = -4k

x1==tk=-2k
x1 —2k 2
Eigen vector x1 = [x2] =[-2k] = k[-2]
x3 k 0

Eigenvector corresponding to 6 :- [A-61]x =0
Using Echelon form

-1 -2 0 x1
R>—>R2-2R1[ 0 4 2][x2] =]0]
0 2 1 x3

Rs3—>2Rs-R:[0 4 2][x2] =][0]

0
0
0
-1 -2 0 x1 0
0
0O 0 0 x3 0

42



r=2,n=3

we choose one variable to the one constant.
e, x3=k

-X1-2%2 =0

4x2+2%3=0

X3 =k

4x,=-2x3 = -2k

Xo=-z=k

NI

X1-2X2 =0 = -X1 = 2%X2 = 2["—21] k

X1:k,X2:_—21k,X3:k,

x1 k
Eigen vector xo = [x2] =[-1/2k]
x3 k
) 2
x2= Z[—1]
2

Eigenvector corresponding to 9 :- [A-91]x =0
-4 -2 0 «x1 0
[-2 -3 2][x2] =[0]
0 2 =2 «x3 0
—4 -2 0 «x1 0
R2—>2R2-Ri[ 0 -4 4 ][x2] =][0]
0 2 -2 x3 0
-4 -2 0 x1 0
R3—>2Rs3-R2[ 0 —4 4][x2] =]0]
0 0 0 x3 0
r=2,n=3
n-r=3-2=1
Letxs =k
-4x1-2%2=0
-dx; +4x3=0
_X2 = -X3
X2 =X3 =K
-4x1-2%2=0
-2X1 = X2
X2 = -2X1 = -2K
X1 = —x2 — —k
T " =
x1 —k/2
. Eigen vector xs = [x2] =[ k ]
x3 k
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-1

xs= [ 2]
3
Three eigen vectors are
2 2 -1
X1 = [-2], X2 = [—1], xX3=[2]
1 2 2
6 -2 2
2) Find the characteristic roots and find the corresponding eigen vectors [-2 3  —1]
2 -1 3
6 -2 2
Sol:- Stepl: Given MatrixA= [-2 3 —1]
-1 3

2
Step 2:- Characteristic Egn |A-Al|=0
6—-1 -2 2
[ 2 3-A -11]1=0
2 -1 3-A
=23-1202+36)1-32=0
= (A-2) (A%-101+16)=0
A-2) (-2) (\-8)=0
A=2,2,8
Step 3:- Eigen values are 2,2,8
Eigen Vectors:- The eigen vector of A Corresponding to A =2
[A-Al]x=0, [A-2I]x=0
-4 -2 2 «x1 0
[-2 1 -—1][x2] =]0
2 -1 1 «x3 0
The eigen vector of A corresponding to A =8
[A-81]1x=0
-2 -2 2 x1 0
[-2 -5 -1][x2] =[0]
2 -1 -5 «x3 0
-2 =2 2 x1 0
R2—>R2-R1; R3—>R3-Ri[ 0 -3  —-3][x2] =[0]
2 -3 -3 x3 0
-2 =2 2 x1 0
R3—R3-R1 [0 =3 =3][x2] =]0]
2 0 0 «x3 0
r=2,n =3, 1-r = 3-2 = 1 we have to select one variable to the one constant i.e, x3 = k
-2X1-2X2+2X%3 =0
-3x2+(-3)x3 =0
X2 = -X3 = -K

]
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X1:2k

x1 2k 2
=x3=[x2] =[-k] =k[-1]
x3 k 1
1 -1 2
.. Eigen vectorsare x1 = [2],x2 =[ 0 ], x3 = [—1]
0 2 1

Exercise problems
I. Find the eigen values & Eigen vectors of the following matrixs.

111
HA=[1 1 1]
111
-1 -1 1
Ans:- A =0,0,3 Eigen Vectors [ 1 ],[ 0 ],[1]
1 1 1
8 -6 2
2)A=[-6 7 —4]
2 -4 3
1 -2 2
Ans:- A =0,3,15 Eigen \Vectors [2], [—1],[—2]
2 2 1
3 1 1
3)A=[-1 5 —1]
1 -1 3
1
Ans:- A =2,3,6 Eigen Vectors [1]
1
2 2 0
AHA=1[2 5 0]
0 0 3
-2 0 1
Ans:- A =1,3,6 Eigen Vectors [ 1 ], [0],[2]
0 1 0
1 2 -1
55A=[0 2 2]
0 0 -2
1 2 —-4/3
Ans:- A =1,2,-2 Eigen Vectors [0], [1],] 1 ]
0o 0 -2
1 3 4
6)A=[0 2 5]
0 0 3
1 1 19
Ans:- A =1,2,3 Eigen Vectors [0], [0],[10]
0 0 2
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Eigen values of Hermitian, Skew Hermitian and Unitary Matrix
Note:- Hermitian = A%= A

Skew Hermitian = A%= -A

Unitary = AA? = |

Where A9= (A)"

4 1-3i

1) Find the eigen values of the following matrix A = [1 +3i 7

]& S.T. Hermitian.

Sol-A= | 4 1- 3i] Characteristic equation of Ais |A-Al| =0
' 1+3i 7
[4 —A 1- 3|] -0
1+3i 7—A

A is Hermitian A°=A ; Eigen values of Hermitian matrix are real.
Exercise Problems:-

_ 3i 2—i
) ST A=[_, . 7]
Skew Hermitian & find eigen values Ans:- A = 4i, -2i
y s =Y VA
V3/2 /2
S.T. Unitary & find eigen values Ans:- —+/3/2 +i/2
_ 1 1+i
3) PT. 1/V3= [ _1]

is unitary and determine the Eigen values & Eigen Vectors.

4 ST [? (i)]

is skew hermitian and find the eigen values & eigen vectors.

! _ 14i 1—i
5) Verify that the matrix A= 1/2 [ +! I

] has eigen values with unit modules.
1—i 1+i

i 00
6) Showthat A= [0 0 ] is skew Hermitian and unitary and find the eigen values and eigen
0 i O

vectors.
Diagonalization of a matrix

A matrix A is diagonalizable if there exists an invertible matrix P such that PXAP = D where D is a
diagonal matrix. Also the matrix P is then said to diagonalize A or transform A to diagonal form.

Similarity of Matrix:- Let A & B be square matrices to A It 3 a non — singular matrix P of ordern — B
P1AP. It is denoted by A B. The transformation y = Px is called similarity transformation.

Thus a matrix is said to be diagonalizable if it is similar to a diagonal matrix.
Note:- Ais nxn matrix. Then A is similar to a diagonal matrix D = diag [A1, A2, ..... An]
. An invertible matrix P = [X1,X2 ..... Xa] = PYAP=D = diag ([A+, A+, ..... An)
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Modal & Spectral Matrix:-

The matrix P in the above result which diagonalise the square matrix A is called the Modal matrix and
the resulting diagonal D is called is known as spectral matrix.

Note:- If the eigen values of an nxn matrix are all district then it is always similar to a diagonal matrix.
Calculation of power of a matrix:-
Let A be the Square matrix. Then a non-singular matrix P can be found

—D=PIAP

D? = (PAP) (PAP) = PZA(PPL)AP = P1A%P
D= P1A%P

D'=PIAP ... (1)

Premultiply (1) by P & Post multiply by P*
PD'P = P(PTA'P)P = (PPY) A" (PPY) = A"

— A"=PDp
A0 0 . 0
Fooar 0 . ol
A'=P 0 0 A3" o P?

[. . ) ) 1
Lo o0 0 . Ann

1 11
1) Diagonalize the matrix A= [ 0 2 1] find A* (or) find a matrix P which transform the
4 3

_ —4
matrix
1 1 4
A=[0 2 5]todiagonal form Hence calculate A* and find the eigen value A™
-4 4 3
1 1 4
Sol:- A= [0 2 5] Characteristic Equaltion |A-Al| =0
—4 4 3
1-x 1 1
[ O 2-X2 1 1=0

—4 4 33—
(1-1) (2-1) (3-1) =0

A=123
Characteristic vector corresponding toA =1
[A-Al]=0
[A-1]1=0
0 1 1 x 0
[0 1 1][y] =10]
-4 4 2 z 0
Y+z=0; = y=-z
y+z =0; letz=k
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-4x+4y+2z =0 y=-k

X =-k/2
x —2k/2 1
Eigenvector x1= [y] =[ k | =—k/2 [2]
z k -2
1
xi=[2]
-2

Characteristic vector corresponding to A = 2
[A-A1x=0; [A-21]x=0
-2 1 1 x 0

[0 0 1][y] =[0]
-4 4 1 2z 0

-1 1 1 x 0

Rs—>R3-4R1 [0 0 1][y] =[0]
0O 0 -3 7 0

-1 1 1 x 0

Rs—>Rs-3R2 [0 0 1][y] =10]

0O 0 0 z 0
r=2,n =3, n-r = 3-2 = 1 we have to give one variables to the one arbitrary constant.
-X+y+z=0;z =0
Then we take x (or)y =y

S y=k
-X+k+0=0
x=Kk, y=k, z=0
X k 1
=x=[y] =[k] =k[1]
z 0 1

.. Eigen value of A’

Characteristic vector corresponding to A = 3
-2 1 1 x 0

[0 -1 1][y] =I[0]
-4 4 0z 0

-2 1 1 x 0
Re>R:-4R1 [0 —1  1][y] =[0]
0 2 -2 z 0
-2 1 1 x 0
R:3—>R3-2R, [0 -1 1][y] =10]
0 0 0 z 0
r=2,n=3,n-r=3-2=1
-2X+y+7 =0
-y+z=0
Letz=k
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-y=-z=-k >y =k

-22 =-y-z = -k-k
-2x=-2k = x =k
X X 1
Eigenvectorx3= [yl =[[y]] k=[1]
Z z 1

P=[x1 X2 X3]

1 11
Model matrix=p=[2 1 1]
-2 01
-1 1 0
P-1=adjp/detp =[ 4 -3 -—1]
-2 2 1
-1 1 0 1 11 1 11 1 00
PlAP=[4 -3 -1][0 2 1][2 1 1] =[0 2 0] =D
-2 2 -1 -4 4 3 -2 01 0 0 3
1 00
2) P-1AP=D=[0 2 0] =Diagonalization
0 0 3
Power of a matrix A" = PD"P1; A*=pD*p-!
1 1110 0 -2 1 O
Ad=[2 1 1][0 16 0][4 -3 -1]
-2 010 0 8 -2 2 -1
—99 115 65
=[-100 116 65]
—160 —-160 81
Eigen value of A =1/A = 1/1,1/2,1/3
2. find the diagonal matrix that will diagonaize the real symmetric matrix A= |
1 2 3
Also find the resulting diagonal matrix. (or) Diagonalize the matrix A=[2 4 6]
3 6 9
1 2 3
Sol:i- A=[2 4 6] Characteristic Equation |A-AlI|=0
3 6 9
1-A 2 3
[ 2 4—-n 6 ] =0
3 6 9 —

(2140 =0 M

A =0,0, 14 Eigen rootsA =0, 0, 14
Eigen vector corresponding to A = 14
[A-141]x =0
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-13 2 3 «x1 0
[ 2 —-10 6][x2] =[0]
3 6 -5 x3 0

X1=1,X2=2,X3=3

x1 1
Eigen vector x1 = [x2] =[2]
x3 3
To the Eigen Vector correspondingto A =0

[A-Al]x =

1 2 3 x1 0
[2 4 6][x2] =[0]
3 6 9 x3 0

1 2 3 x1 0
R2—>R2-2r1; R3—>R3-3R1 [0 0 0] [x2] =[0]
0 0 0 x3 0

r=1,n=3,n-r=3-1=2
let X2 = ki, x3=ko

X1+2Xo+3x3=0

x1=-2k1-3k2
X2=K1
X3=kz
—2k1 —3k2 -2 -3
Eigen vector = [ k1 ]=ki[1] +ko[ O]
k2 0 1
1 -2 -3
Sxe=[2] ,xe=[1] ,x3=[0]
3 0 1
1 -2 -3
Normalised Model matrix =p=[x1 x2 x3] =[2 1 0]
3 0 1
1N1a —2/¥5 —3/V10
po[ XL X2 x84 =[2/V1d 1/V5 0 ]

(] [1x2]] {1x3]|

3/Vid 0 1/V10

1/V14  2/V14 3/V14
=P'=P'=[-2//5 1/45 0 ]
-3/470 0  1/V10

1/V14 2/V14 314 1 o 3 1/V14 2/V5 -3/V10
PIAP=PTAP=[ —2/¥5 1/V5 0 1[2 4 6][2/V14 1/V5 0 ]
—3/410 0 1/y10 3 6 9 3,414 0  1/V10
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00 0
= [0 0 0]=P'AP=PTAP=D
0 0 14

\ Ais reduced to diagonal form by orthogonal reduction.
Exercise problems:

1 0 0
1. Diagonalize the matrix A=[0 3 —1] by orthogonal reduction (or) Diagonalize the matrix.
0 -1 3
2) Determine the diagonal matrix orthogonally similar to the following symmetric matrix
3 -1 1
A=[-1 5 -1]
1 -1 3
3) Determine the diagonal matrix orthogonally similar to the following symmetrix matrix
6 -2 2
A=[-2 3 -1]
2 -1 3
8 -8 -2
4) Diagonalize the matrix A=[4 -3 -2]
3 -4 1
1 0 -1
5) Find a matrix P which transorm the matrix A=[1 2 1 ] to diagonal form.
2 2 3
1 0 -1
Hence calculate A* (or) Diagonalize the matrix A=[1 2 1]
2 2 3
6) Prove that the matrix A = [% é] is not diagonalizable.
2 3 4
7) S.T.the matrix A= [0 2 —1] cannot be diagonalized.
0 0 1

Quadratic forms
Quadratic form:-
A homogeneous expression of the second degree in any number of variables is called a quadratic form.
An expression of the form Q = x"Ax = 2h=1.27=1. aij X 1Xjwhere aij’s are constants is called
quadratic form in n variables x1, xo, ...... Xn. If the constants aij’s are real numbers it is called a real
quadratic form. [x1, X2, ...... Xn]

Q = x"Ax Ex-1) 3x?+5xy-2y? is a quadratic form in two variables x & y
2) 2x2+3y?-472+2xy-3yz+5zx is a quadratic form of 3 variables x,y,& z

Symmetric Matrix :-
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Q = XTAX is a quadratic form where A is known as real symmetric matrix.
coef f.of x12 %coeff.of x1x2 %coeff of x1x2
A = symmetric Matrix = %coeff of x1x2  coeff.of x22 %coeff of x2x3
%%coeffofxle %coefofoxB coeﬁfofxBZ]

: : : . 2
Eg 1:- Write the symmetric matrix of the quadratic form Xi2-+6x1X2+5x2

Sol:- Symmetric matrix of the quadratic form x12+6xX1X,+5%,?

_x1
x2 [

1= 11 3

Sol:- A Symmetrix matrix 3 ©

N o =
Ul Nlo

2 2
2) Find the symmetric matrix of the quadratic form X1 +2x2 +4XoX3+X3X4
Sol:- x1 x2 x3 x4

1 0 0 0
x; Fo 2 2 ol
=% 0 2 o 1
x3 I . 2I
x4 10 0 3 0
a h g
3) find the quadratic form of the given symmetric matrix A[h b f]
g f c
a h g x
Sol:- Quadratic form = XTAX =[x yz] [ b f][y]
g f ¢ z
= ax?+by?+cz2+2hxy+2gxz+2fyz
Exercise Problems:-
Write the Symmetrix matrix of the following quadratic forms
1. X124 2X2%-TX3%-4X1X2+8X1X3
2 X1242X22-TX32-4X1X2+8X1X3+5X2X3
3. 2X1X2+6X1X3-4X2X3
4. X242y +37%+4xy+5yz+67X
5. X2+y2+ 724 2Xt+2yz+3zt+4t?
6. Obtain the quadratic form of the following Matrices.
1 2 3 2 1 5 1 3
1) [2 0 3] 2) [1 3 4] 3) [3 5l
3 3 1 5 4 5
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Canonical form

The conanical form of a quadratic form x"Ax is y'Dy (0r) A1y1?+A2y2>+. ...+ hnyn?
This form is also known as the sum of the squares form or principal axes form

A1 0 0 y1
Canonical form=y'™Dy = [yiyoys] [0 A2 0] [y2] = Ay +A2y2?+hays?
0 0 A3 y3

Reduction of Quadratic form to canonical form by Linear Transformation.

Consider a quadratic form in n variables
xTAx and a non singular linear transformation x = Py then x"= [Py]" = y"P"

X"Ax = y'PTAPy = y'(PTAP)y = y"Dy where D = PTAP

= X'Ax =y'Dy

Thus, the quadratic form x"Ax is reduced to the canonical form y'Dy. The diagonal Matrix D and
matrix A and called Congruent matrices.

Reduction of Quadratic

Nature of the Quadratic form

The quadratic form x"Ax in n variables is said to be

1) Positive definite:-

Ifr=n & s=n(or) if all the eigen values are +ve.
2) Negative definite:-

Ifr=n & s =0 (or) if all the eigen values are —ve.
3) Positive semidefinite (or) semipositive:-

If r<n & s=r (or) if all the eigen values of A>0 & atleast one eigen value is zero.
4) semi negative:-
If r<n & s =0 (or) if all the eigen values of A<0 & atlease one eigen value is zero.
5) Indefinite:-
In all other cases (or) some are positive, -Ve.
—lndexof a real quadratic form
The number of positive terms in canonical form (or) normal form of a quadratic form is known

as the index. It is denoted by ‘s’
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: f iratic f
If r is the rank of a quadratic form & s is the number of positive terms in its normal form, then 3
number of positive terms over the number of negative terms in a normal form of x'Ax . .. Signature =

[+ve terms] — [-ve terms]
Note:- Signature = 2s-r

Where s—index

r—rank = no. of non zero rows.
Short Answer question:-

1) Find the nature, rank, Index of a quadratic form 2x%+2y?+2z%+2yz

2 0 0
Sol:- A=[0 2 1]
01 2
2-% 0 0
AM=0=] 0 2-% 1 ]=0
0 1 2-2

r=12,3
Nature ;- all th eigen values are +ve
= positive definite
Rank:-r=3
Index : S = no. of positive terms = 3
Signature: - [+ve terms] — [-ve terms] =3-0=3
Discuss the nature of the given quadratic form
1) X12+4X22+X3 2—4X1X2+2X1X3-4X2X3

2) X2+A4Xy+6X2-y>+2yz+47?

1) Write the coefficient matrix A associated with the given quadratic form
2) A =symmetric Matrix = [ ]

3) Find the eigen values & eigen vectors.

4) Model Matrix P = [x1 X2 Xs]

. . x1 x2 x3
5) Normalized model matrix P = [z irei]

6) Find P*; P =PT

M0 0
7)PIAP=PTAP=D=[0 2 0]
0 0 23
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Al O 0 yi
8) Canoniclal form =y™Dy=[y1y2ys] [0 A2 0][y2]

0 0 A3 y3
= Myi2+h2y2?+A3ys?
9) Linear transformation is x = Py,
1. Reduce the quadratic form 3x?+2y?+3z2-2xy-2yz to the normal form by orthogonal

transformation . Also write the rank, Index, nature and signature.

3 -1 0
Sol:- given quadratic form 3x2+2y?+3z%-2xy-2yz A=[-1 2 —1]
0 -1 3

Characteristic equation is |[A-Al| =0

3-42 -1 0
[-1 2-A =-1]=0

0 -1 3-A
A= 3,1,4;eigen values L =3, 1, 4
1 1 1
Eigenvectors xe=[ 0] ,x=[2] ,xs=[—-1]
-1 1 1
1 1 1
P=[x1x2 x3][ O 2 —1]
-1 1 1

12 1/4J6 1/V6
P = normalized model matrix P=[e1 e2es] =[ 0 2/N6 —1/V6]

~1/v2 1/J6 1/V/6

N2 0 —1/V2
Pis orthogonal P*=P"= [1//6 2/V6 1/V6]
1/V6 -1/V6 1/V6

1V2 0 —1/N2 3 1 o 1/N2 1/N6 1/3
PIAP=PTAP=[1/4/6 2/NJ6 1/N6]1[-1 2 -—1][ 0 2/N6 —1/V3]

13 -3 13 0 13 g2 16 1743
300

= [0 1 0]=D & the quadratic form will be reduced to the normal form
0 0 4

Canonical form = y'Dy

3 0 0 yl

=[yr y2 ys] [0 1 0][y2]
0 0 4 y3

- 3y12+y22+4y32

Index :- No.of positive terms =S =3
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Rank:-r=3
Nature:- all eigen values are +ve =S =3
Signature:- = [no of +ve terms] — [no. of —ve terms]
=3-0=3
Orthogonal transformation is x = Py
X 1/V2 146 1/V3  y1
x=[y] =[ o  2/V6 —1/V3][y2]
Z 42 16 143 Y3
x= yilNZ+ 1By, + 13 ys
y=2I\By2 - 13 y3
7= -1NZy1+ 1WBYy2 + 113 y3
Exercise:
Reduce the Quadratic form to canonical form by orthogonal Reduction. And write the transformation,
nature index, rank, signature
1) 2X242y%+272-2xy+27%-2y7
2) X12+3X22+3X32-2X2X3
3) 3x2+5y2+372-2y7+27X-2XY
4) 6x2+3y?+322-2yz+47X-4XY

1 2 -3
2) for the matrix A=[0 3 2] find the eigen values of 3A3+5A%-6A+2I
0 0 -2
1 2 -3
Sol:-A=[0 3 2 ] characteristic egnis |A-Al| =0
0 0 -2
1—-A 2 -3
[ 0 3-1 2 ]=0
0 0 —2—-A

(1-A) (3-A) (-2-1) = 0; A=1,3,-2

A is the Eigen value of A & f(A) is a polynomial in A, then the eigen value of f(A) is f(A)
f(A) = 3A3+5A%-6A+2|

Then the eigen value of f(A) are

f(1) = 3(1)*+5(1)*-6(1)+2 = 4

f(3) = 3(3)3+5(3)?-6(3)+2(1) = 110

f(-2) = 3(-2)*+5(-2)%-6(-2)+2(1) = 10

Thus the Eigen value of 3A3+5A2-6A+2l are 4, 110, 10
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0 1

—P.T. the matrix A= [ ] is not diagonalizable.

0 0
Sol:- The characteristic equation is |[A-Al| =0
-1 1 - 2
[ 0 —k] 0=21=0
A =00

A= 0, The characteristic vector. [A-AlI]x =0

=10 1 =1)
X2=0, x1=k

The characteristic vector is [l(;] =K [(1)]

The given matrix has only one i.j. charactestic vector [(1)]

corresponding to repeated characteristic value
CO’

The matrix is not diagonalizable

Note: A is nilpolent matrix = A is not diagonalised.

Eg:- Determine the eigen values & eigen vectors of B = 2A2-1/2A+31 where A= [2 _24]

Sol:-A= [8 —4] characteristic equation is
2 2

IA-AI|=0

[8—X -4
2 2—A

]=0=(8-1) (2-1)+8=0
16-8A-2A+A2+8=0
A2-100+24=0
A2-6A-4A+24=0

A(\-6) — 4(1-6)=0

(A-6) (A-4)=0

A=6,4

B=2A2- Y2 A+3|

A is the eigen value of A

Then the eigen value of B is

B=2(6)? - % (6)+3, B = 2(4)*- Y2 (4)+3 =172, 33
Eigen value of B is 33,72

112 —80] _[4 _2] +[3 0] :[111 —78]

= 2_1 =
B=2A"-%A+3I=[T, 0 gl Ly 1 0 3 39  —6
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Characteristic Equation [B-AI]=0

My 5% 1 =0=0%+105-2376 = 0
A=33,72

Eigen value of B are 33 & 72

A=33, the eigen vector of B is given by [B-331]x=0
30 “3ll! =L
=>Xx=1,x=1

=33, x1= [}]

A=T72, the eigen vector of B is given by [B-72I]x=0
39 -78,x1, _0

30 _78lla) =Ly

=X2=1,X1 =2

2

N

1) Find the inverse transformation of y1=2Xx1+X2+X3, Y2 = X1+X2+2X3, Y3 = X1-2X3

.. The eigen vector for A=72, x2= [

Sol: The given transformation can be written as
yl 2 1 1 x1

[y2] =[1 1 2][x2]
y3 1 0 -2 x3

Y=Ax
2 1 1

Al =[1 1 2]=-1#0
10 -2

Thus the matrix A is non-singular and hence the transformation is regular. The inverse transformation is

given by x=Aly

x1 2 -2 -1 yl
[x2] =[-4 5 3][y2]
X3 1 -1 -1 y3

X1= 2Yy1-2Y2-Y3

Xo=-4y1+5Yy>+3y3

X3= Y1-Y2-Y3

2) S.T. the transformation y1=x1cos0 = Xzsingh, y» = -x1sinf+x2cos6 is orthogonal.
Sol:- The given transformation can be written as Y=Ax

cO i0 x1

v= Y4 A[ S0 o) x=0,

y2
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i)

cos6 sinO]

_ -1 — rcosb —sinG]:AT
—sin® cos6

Here the matrix of transformation is A= | sind  cosd

the transformation is orthogonal.

Cayley — Hamilton Theorem

Theorem:- Every square matrix statisfies its own characteristic equation.
Applications of cayley — Hamilton Theorem

The important applications of Cayley — Hamilton theorem are

1) To find the inverse of a matrix

2) To find higher powers of a matrix.

1 2 -1

DIf A=[2 1 —2] verify cayley — Hamilton theorem
2 -2 -1

Find A1& A* using cayley — Hamilton theorem.
1 2 -1

Sol: A=[2 1 —2] Characteristic Equation |A-AI|=0
2 =2 -1

1-A 2 -1
[ 2 1—-A =2 ] x*-3A%3A+9=0
2 -2 —-1-A

By cayley — Hamilton theorem, matrix A should satisfy its characterstic Equation.
i.e., A>-3A2-3A+91=0

1 2 -1
A=[2 1 =2]
2 -2 +1
1 2 -11 2 -1 3 6 -6
AZ=AA=[2 1 =2][2 1 =2]=[0 9 -—6]
2 - -1 2 -2 1 0 0 3
2
36 61 2 -1 3 24 =21
A=AZA=[0 9 —6][2 1 =2]=[6 21 -—24]
0 0 3 2 -2 1 6 —6 3
A3-3AZ-3A +9] =
3 24 -21 3 6 —6 1 2 -1 100 00 0
[6 21 —-24] -3[0 9 —-6]-3[2 1 -=2]+9[0 1 0]=[0 0 O]
0 0 3 2 -2 1 001 000

P3rP3aidi=0
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Hence cayley — Hamilton is verified.

To find A:-

Multiplying equation (1) with A on b/s
AA3-3A%-3A+9]=0

AZ-3A-3AI+9A1 =0

9AT = 3A+3I-A?

Al= g [3A+31-A?]

3 6 -3 300 3 6 —6
AtT=C[3A+3I-A%= {[6 3 —6]+[0 3 0]—-[0 9 —6]}
6 —6 3 0 0 3 0 0 3
1 1
0 =
-2 19
3 3
[ —2 1l
L 3 3
Find A :-

Multiplying with A
AJA3-3A2-3A+91] =0
A% = 3A%+3A2-9A

3 24 =21 3 6 —6 1 2 -1 9 72 =72
=3[6 21 -—24]+3[0 9 —6]-9[2 1 -=2]=[0 81 =72]
6 —6 3 0 0 3 2 =2 1 0 O 9
1) Show that the matrix satisfies its characteristic Equation Find A*& A* (or) verify cayley Hamilton

Theorem. Find A1& A*

1 -2 2
1)  A=[1 2 3]

0
1 2 2

2)  A=[2 1 2]
2 2 1
1

0 3
3) A=[2 -1 -1]
1 -1 1
1 1 3
4 A=[1 3 -3]
—2 —4 -4
3 4 1
5  A=[2 1 6]
~1 4 7

12]

1) using cayley — Hamilton theorm. Find A% If A = [2 1
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1 2

Sol:- A= [2 1] Characteristic Equation
|A-L1|=0
1-A 2
=0
[ 2 -1- x]
A2-5=0

By cayley — Hamilton Theorem. Every square matrix satisfied its characteristic equation.
A2-5=0

A?=5]

A8 = A2 A2 A2 = [51].[51].[51]

A8 = 6251

2 1 1
2)IfA=[0 1 0], find the value the matrix A3-5A’+7A5-3A+A*-5A3+8AZ-2A+]

1 1 2
Sol: The characteristic Equation |A-Al|=0
2—A 1 -1
[ O 1-A 0 ]=0
1 1 2—A

x3-5)2-7A-3=0 By Cayley Hamilton theorm

A3-5AZ+7A-31=0

We can rewrite the given expression as A[A3-5A%+7A-31] + A[A3-5A%+7A-3I]
AB-5AT+TAS-3AS+AL-EABBAZ-2A+

= AS[AS-5AZ+7A-31] + A[AS-5A%+8A-2I]=I

= A(0) + A[A3-5AZ+7A-31] + AZ+A+1=I

A[AS-5AZ+TA-31] + (A+1)]+

= AZ+A+|
5 4 4 2 1 1 1 0 O 8 5 5
But A%+A+I=[0 1 0] +[0 1 0] +[0 1 0]=[0 3 0]
4 4 5 1 1 2 0 0 1 5 5 8
Exercise:
1) IfA= [El ;] write 2A%-3A%+A2-4] as a linear polynomial in A
a=13 L=
Sol-A=[>  ]IAM[=0
B 1 jz0=n12-5047=0
-1 2-A

By cayley — Hamilton Theorm,

A must satisfy its characteristic equation.
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AZ2-5A+71=0

A?= 5A-7I

A= 5A%-TA

A'=BAS-TA?

AS=BAL-TAR

2A°-3A+AZ-4]

=2[5A*-TA%]-3[5A3-7TA%]+[SA-T1]-4I

= TA-14A%+A2-4]

= 7[6A3-7A%]-14A3+A2-4]

= 21A3-48A2-4]

= 21(5A%-7A) -48A%-4|

=57A%-147A-4

= 57(5A-71) -147A-41

= 138A-403I which is a linear poly in A
Unit — ll(Important questions)

1 2
1 0]
2. Find the nature, index, signature of the quadratic form 3x?+5y>+3z2.  3Marks
8 -6 2
3. Find the Eigenvalues & Eigenvectors of the matrix A=[—-6 7 —4] 5Marks
2 -4 3
1 2 3
4. Verify cayley — Hamilton theorem for the matrix A=[2 4 5] EXpress
3 5 6
B= AS-11A-4A+ A +A-11A3-3A%+2A+I as a quadratic poly in A 5 Marks
1 1 1
5. Diagonalize the Matrix A=A=[ 0 2 1] hence find A* 5 Marks
-4 4 3
6. Reduce the Q.F.to C.F. C.F. Hence find its nature x?+y?+z2-2xy+4xz+4yz 5 Marks
2 5 7
7. Find the sum & product of the Eigen values of the matrix A[1 4 6] 2Marks
2 =2 3

1. Find all the eigen values of A2+3A-21, IfA = 2 Marks

] 3 Marks

w o 3

1 5

8. Write the quadratic form Corresponding to the matrix A=[5 4
7 6

5

9. Find the eigen values 5A%-2A*+7A-3A+Iif A=[2 4 3] 5Marks
1 2 2
4 6 6
10. Using cayley — Hamilton Then find A*& A2 ifA=[1 3 2] 5Marks
-1 -4 -3

62



11. Reduce the Q.form 8x2+7y?+3z2+12xy+4xz+8yz to canonical form and find rank, nature, index &
signature 10 Marks

. (Ei lues:
Iheorm 1. The sum of the eigen values of a square matrix is equal to its trace and product of the eigen

values is equal to its determinant.

Proof: Characterristic equation of Ais . |A-A|=0
[ay, -2 a, L a, |
ie | 8 8y~ AL A
L L L L
an an, L A~ A

expanding this we get

(ay —1)(a, —A)L (a,, —A)—a, (a polynomial of degree n — 2)

+ a3 (a polynomial of degreen +2) + ... +=0
= (—D"A" — (a11 + az + ... +a, )A" 1 + apolynomilaof degree (n — 2)]
(=) A + (=D)L (Trave AXN""! + +a polynomial of degree (n—2)ink =0
If A, Az ...\, are the roots of this equation

(=)™ 1Tr(4)

(=1
urther| —\A|=(C1D"A"+ .+a

sumof the roots = =Tr(A)

put A = 0 then |A| = ag
(_1)n}\‘n + an_lkn_l + an_z}nn_z + ...+ dpg = 0

_ (=D"ap _
Product of theroots = W = q
but ay = |A| = detA

Hence the result

Iheorm 2: If & is an eigen value of A corresponding to the eigen vector X, then 1™ is eigen value A"

corresponding to the eigen vector X.

Proof: Since % is an eigen value of A corresponding to the eigen value X, we have

Pre multiply (1) by A, A(AX) = A( X)
(AA)X = (AX)

APX= 1 X)

A2X= 22X
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AZ?is eigen value of A2with X itself as the corresponding eigen vector. Thus the theorm is true for n=2

let we assume itistrueforn =k
i.e,, AKX = KX-mmmemeee- (2)
Premultiplying (2) by A, we get
A(A*X) = A(3XX)
(AAK)X=B(AX)= KeX).
AK+1X: 5._+1X
351 is eigen value of 4X*with X itself as the corresponding eigen vector.
Thus, by M.1., 2" is an eigen value of A"
Theorm 3: A Square matrix A and its transpose A" have the same eigen values.
Proof: We have (A-» )T=A-2"
=A- A1
|(A- 2 1)T|=|AT- 2 1] (or)
|A- H1=AT- 2]
|A- 2 1|=0 if and only if |A"- % 1|=0
2 is eigen value of A if and only if 2 is eigen value of AT
Hence the theorm
Theorrm 4: If Aand B are n-rowed square matrices and If A is invertible show that A™'B and B A
have same eigen values.
Proof: Given A is invertile
i.e, A exist
w e know that if A and P are the square matrices of order n such that P is non-singular then Aand P
AP hence the same eigen values.
Taking A=B Al and P=A, we have

BAland Al (B A®)Ahave the same eigen value
B Aland (A1B)(AlA) have the same eigen values

B Aland (Al B)I have the same eigen values
B Aland A B have the same eigen values
Theorm 5: If k1, #2, ..... kn are the eigen values of a matrix Athen k %, k %, ..... k # are the eigen

value of the matrix KA, where K is a non-zero scalar.
Proof: Let A be a square matrix of order n. Then |[KA- KI| = |[K(A- 4| = K" |A- A|
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Since K0, therefore |[KA- KI|=0 = [A —AI| =0

i.e, KM\ is aneigen value of KA = if A is an eigenvalue of A

Thusk 21, k 7 ... k #, are the eigen values of the matrix KA

< M, A ... A are the eigen values of the matrix A

Theorm 6: If  is an eigen value of the matrix. Then ~+K is an eigen value of the matrix A+KI
Proof: Let } be an eigen value of A and X the corresponding eigen vector. Then by definition AX= 3x
Now (A+KI)X = (1 + K1) X

=AX+ KX

(A +KX

A+ Kis an eigen value of the matrix A + KI

Theorm 7: If A1, A2... Aqarethe eigen values of Athe 21— K, % — K, ... #n—K,

are the eigen values of the matrix (A— Kl)where K is a non — zero scalar

Proof: Since Ay, As, ... A, are the eigen values of A,

The characteristic polynomial of Ais

[A— A= (- 2)(R2— &) ... (A= A)-mmmmmmmmmmmmmm e 1

Thus the characteristic polynomial of A-KIl is

(A=K — Al =|A— (k+ )|

== A+ = A+ K] e[ — A+ K]

= [0y —K) — 2[4~ K) = 4] ee. [y —K) = 2]

Which shows that the eigen values of A-Kl are 4 — KA, — K, ... A, — K

Iheorm 8: If 2,2, ... 2 are the eigen values of A find the eigen values of the matrix (4 — AI)*
Sol: First we will find the eigen values of the matrix A- A1

Since 2,2, ... A, are the eigen values of A

The characteristics polynomial is

IA-M =0y —K) (A —K) e Ay —K) —————— (1) where K is scalar

The characteristic polynomial of the matrix (A- A1) is

|A- AI-KI| = |A-( 2+K)|

= Ay — A+ K] [ — A+ K] [ A, —(2+K)]

= [ =2 = K] [( =) = K] .. [ O — 1) =K)]

Which shows that eigen values of (A- fare 7, — 2, (A, —2)...2, — A

We know that if the eigen values of Aare 3,2, ... 2, then the eigen values of A%are 23,23 ..... 2
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Theorm 9: If i is an eigen value of a non-singular matrix A corresponding to the eigen vector then At

is an eigne vector of At and corresponding eigen vectgor X itself.
Proof: Since A is non-singular and product of the eigen values is equal to |A|. it follows that none of the

eigen vectors of Ais 0.

If 2 is an eigen vector of the non-singular matrix A and X is the corresponding eigen vector %+#0 and
AX= X, Premultiplying this with A1, we get A1(AX) = A}( 2X)

= (ATA)X =AAIX = IX =LA X

X=AAX = AX =A1X

Hence Atis an eigen value of A*

Iheorm 10: If % is an eigen value of a non — singular matrix A, then }i is an eigen value ofthe m
atrix Adj A

Proof: Since . is an eigen value of a non-singular matrix, therfore #0

Also % is an eigen value of A implies that there exists a non-zero vector X such that AX = AX ------ (1)
= (adj A)AX = (Adj 4)(AX)

= [(adj A)A]X = Aladj A)X

= |4]1X = A (adjA)X

:@X = (adj A)X on (adj A)X :|7Li|x

= Since X is a non — zero vector, ther fore the relation (1)

it is clear that — is an eigen value of the matrix Adj A

. . . 1., .
Theorm 11: If A is an eigen value of an orthogonal matrix then S is also an eigen value

Proof: We know that if % is an eigen value of a matrix A, then 517 is an eigen value of A™?
Since A is an orthogonal matrix, therefore A = Al
517 is an eigen value of A*

But the matrices A and A® hence the same eigen values, since the determinants |A- [ and |Al- 1| are

same.
1. .
Hence > is also an eigen value of A.

Theorm 12: If . is eigen value of A then prove that the eigen value of B = apA%+aiA+azl is ag A2+a; A
+ao

Proof: If X be the eigen vector corresponding to the eigen value %, then AX = #X --- (1)
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Premultiplying by A on both sides

= A(AX) = A(QX)

= A'X = AMAX) =21(X) = 2°X

This shows that A7 is an eigen vector of A°
we have B = aA%+aiA+a;l

BX = [aoA2+a1A+azl)X

= A% X+a1AX+azx

= A% X+ap X+aX = (aoh X+a1 Maz)X

(aoh? X+ay k+ay ) is an eigen value of B and the corresponding eigen vector of B is X.
Theorm 14: Suppose that A and P be square matrices of order n such that P is non singular then A and

P-1AP have the same eigen values.

Proof: Consider the characteristic equation of P*AP

Itis |( PTAP)-AI) = | P2AP-L PIP|

=|P*(A-ADP|= | P | |A-M] |P|

= |A-Al| since [P |P|=1

Thus the characteristic polynomials of P2AP and A are same. Hence the eigen values of PXAP and A
are same.

Corollary: I1f A and B are square matrices such that A is non-singular, then A™1B and BA™ have the
same eigen values.

Proof: In the previous theorm take BA™ in place of A and A in place of B.

We deduce that AY(BA)A and (BA™?) have the same eigen values.

i.e, (AB) (AA) and BA™ have the same eigen values.

i.e, (A1B)l and BA! have the same eigen values

i.e, A1B and BA™ have the same eigen values

Corollary2: If Aand B are non-singular matrices of the same order, then AB and BA have the same
eigen values.

Proof: Notice that AB=1AB = (B"B)(AB) = B (BA)B

Using the theorm above BA and B (BA)B have the same eigen values.

i.e, BAand AB have the same eigen values.

JTheorm 15: The eigen values of a triangular matrix are just the diagonal elements of the matrix.

B11 Qg2 Gap
0 Qag—p woee Qay . .

Proof: LetA=| " | be atriangular matrix of order n
0 0. a
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The characteristic equation of A is |A- =0

B11-3 Gz e B1n
. 0 b
Le., =0
ID ID“' e Ii-'[Z"'!."!_.:'-.

i.e, (- ) (@z2- A ..... (am- H=0

= A= aw,az,.... am

Hence the eigen values of Aare a1, az2,.... an Which are just the diagonal elements of A,

Note: lly we can show that the eigen values of a diagonal matrix are just the diagonal elements of the

matrix.

Theorm 16: The eigen values of a real symmetric matrix are always real.

Proof: Let * be an eigen value of a real symmetric matrix A and Let X be the corresponding eigen
vector then AX= 3x — — — —(1)

Take the conjugate 77 =7 %
Taking the transpose $7(1)7 = L XT
Since 1 =4 and AT = A, we have X A=1 X"
Post multiplying by X, we get ¥7 AX = A XT¥------- 2)
Premultiplying (1) with KT , we get X AX =AX X ----n- (3)
(1) - (3) gives (A -2 )X'X =0but XTX =0 =% -1 =0
= L —A = A s real. Hence the result follows
Theorm 17: For a real symmetric matrix, the eigen vectors corresponding to two distinct eigen values
are orthogonal.

Proof: Let A1, A2 be eigen values of a symmetric matrix A and let X1, X2 be the corresponding eigen
vectors.

Let A1 # A2 we want to show that X1 is orthogonal to X2 (i.e., X7 x, = 0}

Sice X1, Xz are eigen values of A corresponding to the eigen values A1, A2 we have

AX1= Xy - (1) AXz =22 Xp - (2)

Premultiply (1) by X7

= XTAX, = A, XTX,

Taking transpose to above, we have

= X[AT(X1)" = X[ AT(X])

f.e, X]AX, = A, XTX, ©)

68



Premultiplying (2) by X7, we get X]AX, = A, X[ X, —— —— — (4)
Hence from (3) and (4) we get

(A, — A XX, =0

= X1X,=0

QA= 2y,)

X, isorthogonal to X,

Note: If A is an eigen value of Aand f(A) is any polynomial in A, then the eigen value of f(A) is f(A)

Objective type questions

1. The Eigen values of[_62 i] are [ 1]
a) 1,2 b) 2,4 c)3,4 d)1,5

2. If the determinant of matrix of order 3 is 12. And two eigen values are 1 and 3, then the third eigen

value is [ ]
a) 2 b) 3 c)1 d) 4
1 -1 2
3. If A=[0 2 4] then the eigen values of Aare [ ]
0 0 3

1,12  b)1,23 ol%, 13 d1,2%

1 -2 2
4. The sum of Eigen valuesof A= [0 1 3] is [ 1]
3 -1 2
a) 2 b) 3 c)4 d)5
5. If the Eigen values of A are (1,-1,2) then the Eogen values of Adj A are [ 1]
a) (-2,2-1) b)) (1,1,-2) c) (1,-1,1/2) d)(-1,1,4)
6. If the Eigen values of A are (2,3,4) then the Eigen values of 3A are [ ]
a) 2,3,4 b) ¥, 113, % ) -2,3,2 d) 6,9,12
7. If the Eigen values of A are (2,3,-2) then the Eigen value of A-3I are [ ]

a)-1,0,5 b)2,3,-2 0)-2-32  d)1.2.2

o

If A'is a singular matrix then the product of the Eigen values of A is [ ]
a)l b) -1 c) can’t be decided d)O0
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10.

11.

12.

13.

14.

15.

16.

17.

1 2 -1

The Eigen vector correspondingto x =2oo [0 2 2]is [ 1]
0 0 -2
2 -1 1 1
a)[1]  b[1] c) [1] d)[1]
0 0 1 -1
2 1
If two Eigen vectors of a symmetric matrix of order 3 are [—1] and [ 2 ] then the third eigen vector
0 -1
is [ ]
1 1 1 1
a)[2] b2 c) [2] d) [2]
-1 3 0 5
2 :
The Eigen values of [El 2] are 3 and 4 then the eigen vectors are [ ]

) G DI ol ORle]

If the trace of A (2x2 matrix) is 5 and the determinant is 4, then the eigen values are [ ]
a) 2,2 b) -2, 2 c)-1,-4 d)1,4
Sum of the eigen values of matrix A is equal to the [ ]
a) Principal diagonal elements of A b) Trace of matrix A ¢) A&B d) None
_ 4 2 1 —
IfA—[_3 3] then A = [ 1
a)l[70-0] b) 1[50 -0] )l [7o—o] d)L[70 - o]
6 4 2 18
6 2 2 _
IfA= [1 _1] then 2A%-8A-161 = [ 1
a) b) 2A c) A-l d) 51
Similar matrices have same [ 1]
a) Characteristic Polynomial b) Characteristic equation
c) Eigen values d) All the above
1 2 5
IfA=[0 -1 2] then A = [ 1]
0O 0 2
a)%[D+D—D2] b)%[D+D + 0?]

¢)![o+20—0?] d)l[o+20 —0?]
2 2
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18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

If A has eigen values (1,2) then the eigen values of 3A+4A™* are [ ]
a) 3,8 b) 7, 11 c)7,8 d)3,6

1 2
3 4

a) 2A%+5A  b) 4AZ+5A ) 2A%+4A  d) 5AZ+2A
If D = PAP then A? = [ ]
a) PDP!  b) P2D2(P)2 c) (PL)2D? (p?) d) PD?P

1 1 3
The product of Eigen values of A=[1 5 1] oo [ 1]
3 11
a) 18 b) -18 c) 36 d)-36
If one of the eigen values of Ais zero then A'is [ 1]
a) Singular b) Non-Singular c) Symmetric d) Non-Symmetric

IfA=[ ] ohooo® = [ 1]

If A is a square matrix, D is a diagonal matrix whose elements are eigen values of A and P is the
matrix whose Columns are eigen vectors of A%, then A* = [ ]
a) PDP? b) PD*P c) PD?Pd) PD*P

% is an eigen value of [ ]
a) AdjA b) A.adj A c) (adjA) A d) None

The characteristic equation of [ —11 g] is [ ]

a) X2—3x+5=0 b)x2+3x+5=0
) x24+3x-5=0 d)yx2—=3x-5=0

IfA:[51 g]uhu eigen values of A are 6 and 1 then the model matrix is [ ]
3 0 2
4 141 Db 1 c 1 d 1
y L 4 )[1 ! )[1 ! )[1 !

IfA= [10 03] then the model matrix is [ 1]

a)[l 0 =1 0 11 1

1
0 1 DLy 4 ol o 9l 4l

IfA:[l 4]thenthemodel matrix is -
2 3)1 , .

a — _

[ 10 7o g o,

4

|fA:[12 N

5
Mo Ao 0 o 9 oy %

then the spectral matrix is [ ]

30. IfA= [:’; _43] then the spectral matrix is [ ]
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-5 0 0 0 0

2 3 4
31. If the eigen values of Aare 0, 3, 15 then the index and signature of X'TAX are [ ]
a)2,1 b) 2,2 c) 3,3 d)1,1
1 1
32.1ftwo eigen vectors of a symmetric matrix are [-1]ooo [ O ] then the third eigen vector is
1 -1
_ 1 -1 -1 1
i a) [-1] b) [-2] c)[1] d) [2]
1 2 1 1
[ ]
33. Product of eigen values of matrix A is equal to [ 1]

a) determinant of A b) Trace of A c¢) Principal diagonal of A d) None
34. If Aand B are square matrices such that A is non-singular then A'B and BAthave [ ]
a) different eigen values b) same eigen values

c) reciprocal eigen values d) None

5 00
35. Theeigen values of [0 2 O] ooo []
0 0 4
a)2,4,5 b)-2,-4-5 ¢)1,.23 d) 3,4,6
2 3 5
36.1fA= [0 —4 7]thenA3-12A= [ ]
0 0 2
a) 121 b) 81 c¢) 10l d) 16l
37.1EA= 5 ‘2‘] then 6A%A%A = [ ]
a) 5l b) 101 c) 6l d) 8l
4 _
8.ITA= T 12] then A%-4AZ+A+6] = [ ]
a) [0] b) | c)3l d)5l
39.IfA= [4 _Z]and X = 2 aoo 3 then the modal matrix is [ ]
1 1
1
a) ~ 2] 1 1 -2 1 11
[, 1 b)[ 1l ol 1 a5 7l
4o.|fA:[51 g]thenD: [ ]
2 0 30 6 0 6 0

@ o Dl g O 2 L
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41. 1A= [12 z] then D = [ ]
a) 0] 4 0 5 0
lo > b)[j 41 9lp 5l Ay o
42. If » is an eigen value of A then =™ is eigen value of [ 1
a)A b)Alc)AM dyA™

-1 0 0

43. IfA= [ 2 —3 .;3] then the eigen values of A are [ 1]

1 4 2

a)-1,-9,-4 b)1,-3,2 c)1,3,-2 d)1,9,4

44. If » is the eigen value of A then the eigen values of A are [ 1]
2) = b) - Q-  d)»

45. If the eigen values of A are 1, 3, O then |4| = [ ]
a4 byl ¢)3 d)o

46. The characteristic equation of [;’ i] is [ ]

AR +EXFL=0 b)ri-6x—-1=0
C)»+6x—-1=0 dxr"—6x+1=0

1 2 -3
47. IfA= [n:} 2 1| thenp AP = [ ]
o o 3
1 0 0] 1 0 1 1 0 0 1 0 0
a) ['D 2 0| b ['D 2 l] c) ['D 4 -::1] d) [G 1/2 G]
0 0 3 0 0 3 0 0 9 0 0 1/3
2 =2 27
48. I1fA= [1 1 1 |the eigen values of Aare (2, 2, -2) then pA3P = [ ]
1 3 -1
2. 0 0 2 0 1 4 0 0 a 0 0
a)[ﬂ 2 'le)[i} 2 llc)[ﬂ 4 -::1] d)[i} 8 'Dl
o 0 -2 o 0 =21 o 0 4 o 0 -3
-1
49. If the eigen values of a matrix are (-2, 3, 6) and the corresponding eigen vectors are [ 0 l
1
1771
{_11 [glthen the spectral matrix is [ 1
1111
-2 0 0] -1 1 1
a)[ﬂ 3 0 b)[@ -1 2]
0o 0 &l 1 1 1
4 0 0] -1/NZ 13 1/e
c) [-:} 9 0 df| o —-1/43 26
0 0 36l 1/ 2 l;’\f'g ;*TE
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50. If the eigen values of a matrix are (-2, 3, 6) and the corresponding eigen vectors are
-1y /-1 1
( 0 );(—1) and (gj then the spectral matrix is

L1/ N1 V1

[—2 0 0 -1 1 1
a|o 3 Gl b){ 0 -1 2]
Lo 0 6 1 1 1
[—1V2 143 1/E 4 0 0
| o —1/43 2/4/8| d) [-:} 9 0 ]
1/NZ 13 146 0 0 36

Unit-11 Eigen values and Eigen Vectors [KEY]

c 11 d 21 d 31 b 41 b
d 12 d 22 a 32 d 42 c
b 13 b 23 b 33 a 43 d
c 14 d 24 a 34 b 44 b
a 15 b 25 a 35 a 45 d
d 16 d 26 a 36 d 46 b
a 17 c 27 a 37 c 47 c
d 18 c 28 a 38 a 48 d
a 19 d 29 d 39 a 49 a
d 20 d 30 a 40 c 50 b
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UNIT - 1V



CALCULUS

INTRODUCTION

Let y=f(x) be a function continuous in the closed internal [a,b]. This means that if
a<c<b,
limf(x) =f(c)and  lim f(x) =f(a), lim f(x) =f(b)
x—-c x—a+0 x—=b—0
Lety = f(x) be differentiable in the closed interval [ a,b]. This means that if a < c < b, the derivative of
f(x) at x = c exists.

i.e., lim fOZfO oyiq
x-c X—C

Further lim f®=f@ and  lim =0 eyigts,
x—a+0 x—a x—b—0 x—b

Geometrically, if f(x) in a continuous function in the closed interval [a,b], the graph of y=f(x) is a
continuous curve for the points x in [a,b]. If f(x) is derived in closed [a,b], there exists a unique
tangent to the curve at every point in the interval [a,b]. This is shown in the following figures (1), (2), &

@A).

|~ A

fig (1) fig|(2) fig(3)

Mean Value Theorems
1) Rolle’s Theorem
Statement : Let f(x) be a function such that

i) Itis continuous in closed interval [a,b]

i) It is differentiable in open interval [a,b] and

i)  f(a) =f(b)

Then there exists at least one point ¢ in open interval (a,b) such that f'(c)= 0
Geometric interpretation of Roll’s theorem
Consider the portion AB of the curve y=f(x), lying between x = a and x = b such that
i) It goes continuously from Ato B

i) It has a tangent at every point between A and B, and
iii) Ordinate of A = ordinate of B



C1 x=b

From the above fig(1), it is self evident that there is at least one point ¢ (may be more) of the curve at

which the tangent is parallel to the x — axis.

i.e. slope of the tangent at ¢ (x = c¢) = 0. But the slope of the tangent at c is the value of the
different co-efficient of f(x) with respect to x, therefore f(c)= 0.

Hence the theorem is proved.
Eg: 1) Verify Rolle’s theorem for the function f(x) = % or e*sin x in [o,m]
Solution : given f(x) = %

i) We know that every polynomial is continuous in [a,b] so that sin x & e™ are also
continuous function is [0,x]

. sinx

is also continuous in [o,r]
ii) Since sin x and e* are derivable in [0,x]

. sinx . . .
s also continuous in [o,x]

i) F(0)=*22=o0and f(x) = <=0
- (0) =f(m)
Thus all the three conditions of Roll’s theorem are satisfied.
. there exists c€ (a,b) such that f*(c) =0
~.(c-a)™ (c—b)™ [(m+n) c— (mb+na)] =0
— (m+n) ¢— (mb+na) =0
— (m+n) ¢ —mb+na

- c=DEME 3 1)
m+n

[ since the point ¢ € (a,b) divides a and b internally in the ratio m:n]

.. Roll’s theorem is verified.



) ) X2 +ab |
(3) verify Rolle’s theorem for the function log[ (@t lin[ab]l,a>0,b>0
x(a
)
. . _ x2—ab
Solution : let f(x) = log m ,

= log (x? +ab) — log x (a+b)
= log (x? +ab) — log x — log x(a+b)

i) Since f(x) is a composite function of continuous functions in [a,b], it is continuous in [a,b].
e T _1__x*-ab . .
i) f(x) = Trab 2X * =02t , Which exists Vv x€ (a,b)

-~ f(x) is derivable in (a,b)
2
_ a”+abq _ —
iy f(a)= Iog[az_—*ab)] =logl =0
_ b +aby _ _
f(b) = log [a2+ab)] =logl=0
- f(x) =f(b)

Thus f(x) satisfies all the three conditions of Rolle’s theorem.

~.there exists c€ (a,b) such that f'(c) =0

c2—ab

Y T O
ie,c?—ab=0
ie, c?=ab
ie, c==vab

. c=+ab € (ab)

Hence Rolle’s theorem is verified.
(4) Using Rolle’s theorem, show that g(x) = gx® — 6x? — 2x +1 has a zero between 0 and 1.
Solution:
i) since g(x) being a polynomial.
.. itis continuous on [0,1]
i) since the derivative of g(x) exists for all x £(0,1)
.. it is derivable on (0,1)
iii) g(0)=1, and g(1) = 8-6-2+1=1
- 9(0) =9(1)
Hence all the conditions of Rolle’s theorem are satisfied on [0,1]
Therefore , there exists a number c € (0,1) such that

g'(c) =0



Now gl(x) =24x% — 12x -2
s g{c)=0
i.e,24c-12c-2=0

i.e.,12¢?-6c-1=0

34421

ie.c="50

i.e.c=0.63 or-0.132

Here clearly ¢ = 0.63 € (0.1)
Thus there exists at least one root between 0 & 1
5) Verify whether Rolle’s therorem can be applied to the following functions in the intervals cited :
i) f(x) =tanx in[0,x]
i) () = Zin [-1, 1]
i) f(x) = x%in [1,3]
solution:
i) F(x) =tan x in [0,x]  since f(x) is discontinuous at X = /2
Thus the condition (1) of Rolle’s theorem is not satisfied.
Hence we can’t apply Rolle’s theorem here.
i) f(x)==in[-1,1]
Here f(x) is discontinuous atx =0
Hence Rolle’s theorem can’t be applied.
iy 0 =x*in[13]
Here clearly f(x) is continuous on [1,3] and derivable on (1,3)
But f(1) G (3)
i.e., condition (3) of Rolle’s theorem fails
Hence we can’t apply Rolle’s theorem for f(x) = x® in [1,3]
Exercise : (A)
1) verify Rolle’s theorem for the following functions in the intervals indicated.
i) x2in[-1,1] i) x(x+3) €¥2in [-3,0]

2
i) X%~ 2% in (0,8) W) =2 in (2.3)
o

v) X% -2x-3in (1,-3) i) x| in [-1,1]



answers : i) ¢=0 iijc=-2 iii) c=1 iv) not applicable
v) c=1 vi) not applicable.
1) Langrange’s means value theorem :- (LMVT)

Statement: let f(x) be a function such that
i) Itis continuous is closed interval [a,b] and

ii) Differentiable in open interval [a,b]

Then there exists at least one point of x say ¢ in open interval (a,b) i.e. a < ¢ <b such that
fl (©)= fb)—f(a)
b—a

Note : Langrange’s mean value theorem is also known as first mean value theorem of differential
calculus.

Geometric interpretation of Lagrange’s mean value theorem

Let A,B be the points on the curve y = f(x) corresponding to x = aand x=b so that A = [a,f(a)] and
B=[b,f(b)], shown in figure (i)&(ii) below.

Y Y oa C3

A

fig(ii)

.. slope of chord AB = f(b)b’%

By lagranges mean value theorem, the slope of the chord AB = f}(c), the slope of the tangent of the
curve at c(x=c)

Hence the lagrange’s mean value theorem asserts that if a curve AB has a tangent at each of its
points, then there exists at least one point C on this curve, the tangent at which is parallel to the chord
AB.

Another form of Lagrange’s mean value theorem
Let f(x) be a function such that
i) It is contiunuous in the closed interval [a,a+b],
ii) f1(x) exists in the open interval (a,a+b)

Then there exists at least one number 6 (0 <6 < 1)



such that f(a+b) = f(a) +hf(a+6b)

Solved examples
Eg (1) : Verify Lagrange’s mean value theorem for
f(x) = x3-x2-5x+3 in [0,4]
solution :
Since f(x) is a polynomial so that it is continuous and derivable for every value of x.
In particular, f(x) is continuous in closed interval [0,4] and derivable in open interval (0,4).
Hence by Lagange’s mean value theorem, there exists a point ¢ in open interval (0,4) such that
fi(c) = f(4)-f§(0)
4-0

ie,32-2c-5 = =IO o (1) (- f(x) =3 -2¢5)
Here f(4) = 43-42-5(4)+3 = 64-16-20+3=31
and f(0) =3
from (1), we have 3¢?-2¢-5 =7
=3¢?-2¢-12=0

. o=2HVTETTE _ 20VTIE _ 1437
6 6 3

Here clearly ¢ = ugaj c (0,4)

2) Verify lagrage’s mean value theorem for f(x)=logex in [1,e]

Solution:  given f(x) = logex flfl) =1

X
Since f(x) is a polynomial so that it is continuous in [1,e] and derivable in [1,e]

.. By lagrage’s mean value theorem, there exists a point ¢ ¢ (1,e) such that

)= f@ 101
fic) =1 il €]

e—l_

1(c)=1
butf(c)—c

1 -1

C e1
c=e-1c(le)

Hence lagrange’s mean value theorem is verified.
3) State whether langrange’s mean value theorem can be applied to the following function in the
interval indicated justify your answer.

F(x) =x**in[-1,1]
Solution :



Given f(x) = x1?

Clearly f(x) is continuous in closed interval[-1,1]

But fi(x) = % X ;—1 = 3x_12/2 is not derivable at x = 0.
Hence it is not derivable in open interval (-1,1)
Hence we can’t apply lagrange’s mean value theorem.

Exercise : (B)

1) Verify lagrange’s mean value theorem for the following functions in the intervals indicated.
i) Cos x in [0,7/2] i) [xin[-1,1]

i) x3-2x% in [2,5] V) 2x2 - 7x+10; a-2, b=5
2) Find C of the lagrange’s theorem for
F(X) = (x-1) (x-2) (x-3) on [0,4] ans; C= %
3) State whether LMVT can be applicable for the function
F(X) :% in[-1,1]  ans: not applicable
Eg:

—a

1) Ifa<b, prove that 2
1+b2

; b— )

<tanta< Taz using lagrange’s mean value theorem reduce the
a

following

. 3
i) £+_<tan'1i<"_+1_
4 25 3 4 6

.. Sm+4 -1 T+2
i) g <tn2ess

Solution :
Consider f(x) = tan™x in [a,b]for 0<a<b<1
Since f(x) is continuous in closed interval [a,b] and derivable in open interval[a,b] we can apply
lagrange’s mean value theorem.
Hence exists a point ¢ ¢ (a,b) such that
fi(x) = FO)=f(@
) " b-a
1
1+x2

1
1+c2

Thus there exists a point ¢, a<c<b such that
-1 -1

1 _ tan b—tan a

142 b-a @

Hence fi(x) =

fi(c) =

We have a<c<b



1+82 < 1+C% < 1+b? ---omme- )

1 > 1 1
1+a?  1+c2  1+b2

Using 1) and 2), we have

-1 -1
1 S tan b—tan a N 1

1+a? b—a 1+b2
b—a =1 1 b—a
< — <% e
or oz <tanb-tanta< — (3)
Hence the result.
Deduction:
. b— 1 1 b—a
< — < J—
i) We have T <tan b —tan*a oY 4)

Putb= % ,a=1, weget

4 4
—at AN ol a !
_f?f <tan (3) tan™(1) < ey

IS

w

4-3
Setant By -Ii
- gz <tan” () -7<-
9
3, 1 4 w1
— << <"+ =
- 25 4 tan ( % 4 6

ii) Put b=2 and a=1 in (4), we get

2-1 4 4 2-1
2z <tan?(2) —tan*(1) < oz

- 1g< tan(2) — /4 > 15

1 T 1 T, 1
=+ =< <= =
— St < tan 2) o3

4451 1 2+m
4+5m <2t
or = = <tan 2) "

2) Prove that % + 'gl—\/3< sin 3:—}< T+ 1Eusing langrange’s mean value theorem.

Solution : let f(x) =sin™(x), which is continuous and differentiable .

_ 1 _ 1
Now f}(x) = = fic)= =
By Langrange’s mean value theorem, there exist ¢ ¢ (a,b) such that a < c<b and
fl(c ) — f(b)—f(a)
b—a
1 — sin_1 b—sin_lu
fiw e @

We have a<c<b

ie,



Then a? <¢? <b?

— 1-a2>1-¢?> 1-b?

> V1i-a2>V1—c2 >V1- b2

1 1 1
> —— >
- 1-a 1—c 1-b
-1
1 sin  b—sin a 1
- " <
- 1—a? b—a 1-b2
b—a sl sl b—a
<sin“b —sin*a <
- 1+a? sin*b —sin*a 1+b2
Puta=1/2 and b =3/5
3_1 3 1 3_1
—>-52 <sin'1z —sin’15 <52
1 1.2
Vi Vi-()
2 - 13 m<1
——<sin"= --"-
- 10vV3 s 4 6
8
T+ 1 - 13 T +1
—T—<sints < -
6 5V3 SIS %5 %

3) Prove using mean value theorem | sin u- sinv | < |u—V]|

Solution : if u = v, there , is nothing to prove.
If u> v, then consider the function
F(u) =sin uon [v,u]
Clearly, f is continuous on [v,u] and derivable on(v,u)
.. By Lagrange’s mean valve theorem, there exists ¢ c (v,u)
Such that L=1C) = £t (c)

sinu-sing _
T———— =Co0scC
u-v

But|cosc|<1

|IRTEY | <

If v > u, then in similar manner, we have
[sin v—sinul <|v-—ul
[sinu—sunv|<|u-v]| [..x=]
Hence for allu, vER
[sinu—sunv|<|u-v|

4) show that for any x> 0, 1+x < e* < 1+€*



Solution:

Let f(x) = e* defined on [0,x] and derivable on (0,x)
.. By Lagrange’s mean value theorem
There exists a number ¢ ¢ (0,x) such that

)= §(0) =gt
——r)

el
X
v
e . 1 R (1)
Now cg(0,x) i.e.,,0<c<Xx
e’<ef<er
e~ 1

1<———<eX<from(1)>
X
X <e*—1<xe*
1+x < e* < 1+xe*

Exercise : (C)

1) Find c of cauchys mean value theorem for f(x) = v/3 and g(x) = 1—‘/;in [a,b]

Solutions :
Clearly f, g are continuous on [a,b]
We have f(x) = vx
1

Fl(X) = ﬁ

And g(x) = \/—1;

gi(x) =- ﬁ , which exists on (a,b)

.. f,g are differentiable on (a,b)

Also g'(x) # 0 V x e(a,b) CR*

.. conditions of cauchys mean value theorem are satisfied on (a,b)

... there exists ¢ c (a,b) such that

f)—f(a) = f1(c)
gh)—f(a)  gl(o)

[~

;

-2
1 = 1

b Va

vb—va =M
B=L e

s

sl
B

c

Vab



Vab (Yb=Va) — c

Vb—Va
Vab = ¢

Clearly c=+ab c (ab)
Hence Cauchy mean value theorem is verified.
2) Find c of Cauchy mean value theorem on [a,b] for
f(x) =e*and g(x) =¢* (a,b>0)
solution :
given (x) =e*and g(x) =e™
clearly f, g are continuous on[a,b] and f,g are differentiable on (a,b)
also g'(x) =-e>*# 0 V x & (a,b) such that

f(0)—f(a) = f1(c)
gh)—f(a)  gl(o)

eh— ea ec

e~b—e-a —e—¢
b a
e—e _ _a
= ¢
eb " ea”

b a
el—e
__620

2a_ch

P

eatb(gb—eay
,(eb, ea)

gath — g2¢
atb=2c
C=%Lc (ab)

Hence LMVT is verified

Exercise :(D)

1) Verify cauchy mean value theorem for the following

i) f(x) =, 909 = on [a,b] ans: ¢ :2;—517

i) f(x) =sin x, g(x) = cos x on [o, %ans ic=7/4

i) f(x) =log x and g(x) = x2 in [a,b], b>a>1 show that :08>—oga - atb

b—a 2c2

iv)  f(x)=x%,gx)=x%in[1,2]ans:c= %

Taylor’s theorem



Statement: If f : [a,b] =R is such that
i) ™ is continuous on [a,b]
ii) ™is derivable on (a,b) or f exists on (a,b) then there exists a point ¢ c (a,b) such that

(o) = f(a) + 2% fi(a) +2=Y fi(a) + —+ =T 11 @)+R_
1! 2! n—1

i) Scholmitch — Roche’s form of remainder:
_ (b=a)P(b—c)""Pf"(c)
Rz e W

i) Lagrange’s form of remainder : put p=1, in (1) we get
R,= (b—a)"f"(c)

n!
iii) Cauchy’s form remainder : put p=1in (1), we get
R, = (=) (b=cy~ifn(0)

(-1
Note: (x) = f(a) +(x-a) f(a) +(";—|“)2f11 (a)+------- is called Taylor’s series for f(x) about
X =a

Machlaurin’s theorem

Statement:  Iff:[0,X] =R is such that
i) 1 is continuous on [0,X]
i) ** is derivable on(0,x) then there exists a real number © ¢ (0,1) such that
f(x) = f(0) +x f1(0) + x;!f (0) + -=------ +x"1 fD(0) 4R,

i) Roche’s form of remainder:

= X"(1-0)" " (8x)
Rn= —— @

i) Langrange’s form remainder : put p=nin (1)

We get R, = Xn—nl " (6x)
iii) Cauchys form of remainder : put p=1in (1)

x"(1-0)""Pf" (0x)

We get R, = nD!

Solved examples

1) Obtain Taylor’s series expansion of f(x) = e* in powers of x+1

Or



Obtain the talylor’s series expansion of e* about x = -1.
Solution : let f(x) =e*about x = -1
Herea=-1

o f(x) = eXfi(x) =e* fi(a) = &

f(x) =% ----- f(a)=¢?
We know that the Talylor’s series expansion of f(x) about x =a is
10 = @) + () @) + E=2 13 (a) 4mme (1)

put f(x) =e* & a=-1in (1), we get
&= 1(01) + (1) () + 0 () 4+

2
e zel+ (xl) e+ &
2!

2
e = el [ 1+ (x+1) + (HTZ) +-—-] isthe required Taylor’s series expansion about X =-1

o 5
2) Showthat % * =x+4 X + -
V1-—x2 3!

-1
Let f(x) = Z2_Z then f(0) =0

Vi
VI—=xZ f(x) =sin’x - (1)
Differentiating (1) w.r.t. X, we get
VI=2Z %) +109) (5p) = 7=
(1) 1) - XF(X) = 1 -woemmmemoeee 2
Now f1(0) =1

Differentiate (2) w.r.t. x, we get
(1-x3) fY(x) + f1(x) (-2X) —xf(x) — f(x) =0 ------
(3) (1-x?) f1Y(x) — 3xfi(x) —f(x) =0
Then f1(0) =0
Differentiate (3) w.r.t. x, we get
(1-x3) f1Y(x) — 2x f13(x) — 3fL(x) -3xfL(x) — f(x) =0
(1-x?) f11Y(x) -5xfLi(x) — 4f1(x) =0
fH1(0) - 4f'(0) =0
(o) =4 (.. f4(0) =1)
Similarly f¥(0) =0
We have by Taylor’s theorem,

F() = f0)+Lx+ X £11(0) 42 F13(0) + Zf¥(0)+-—



sin~1x

w3 =0 +Lx + 2 f11(0) 41 fi11(0) + 1 (0)+—

3) Show that log(L+€") = log2 +% + ’éz - &24 + - and hence reduce that

2
e 2 _1yx_xb,
x+1 2 4 48

Solution : let f(x) = log(1+€*) then f(0) = log2

Differentiate successively w.r.t. x, w get

1y =_¢ % = L =1
f(x) T 1ter "f(o)_1+1 2
fllX:(1+e)e—ee - ex .l - 1 =l
® (14e)2 (14ex)2 - 7(0) (1+1)2 4
x 2 x x x x X x X 2x 2x
flll(x)=(1+e) e —2e (1—e )e — (-e e [e +te —2e ]
(1+ex)4 (1+ex)4
_ ex_e 2x
(1+4ex)3
- ) =0
(1+e¥)3(eX—2e2%)— (eX— e2X) 3(1+e¥)ZeX
(1+ex)6
_ (+4e¥)(e¥—2e2¥)—3e*(1-1) _ 2 _1
- 1-0? 6 8
Substituting the values of f(0), f'(0), --------------- in the maclaurin’s series

f(x) = f(0) + xf(0) + 2_2 fii(o) + a;_ffm (0) +

x2 x3 .
We get log(1+e*) =log2 +x(3) += (‘_1‘) = (0)+ F('lé) F—
2 4
log(1+€") =log2 + =+ = - 4 —eromemeomeoes (1)

Deduction :

Differentiating the result given by (1) w.r.tx,
3

1 x — 1 2x _x
=2+ - o
Weget1+e2 2 8 48

4) Verify Taylor’s theorem for f(x) = (1-x)*2 with lagrange’s form of remainder upto 2 terms in the
interval [0,1].

Solution: consider f(x) = (1-x)*2 in [0,1]
i) f(x), f(x) are continuous in [0,1]
ii) fI(x) is differentiable in (0,1)

Thus f(x) satisfies the conditions of Taylor’s theorem.



We consider Taylor’s theorem with Lagrange’s form of remainder
2
f(x) = f(0) +xf*(0) + % (o) with 0<6 <1 -— (1)

Here n =p=2, a=0, and x =1

£(x) = (1-X)2 then (0) = 1

()= 2 (1-9*2 then f(0)= - 5/2

fi(x) =22 (1-%)" then f'(0x) =22 (1-6%)'"2

ie., f(0) = % (1-0)12
and f(1) =0
From (1), we have f(x) = f (0)+xf*(0) +"2_2! fL1(6x)
Substituting the above values, we get
0=2-=036
. 0 lies between 0 and 1.

Thus Taylor’s theorem is verified.
5) Obtain the Maclaurins series expression of the following functions.

i) e ii) sin x iiii) loge(1+)
solutions:
i) let f(x) = e* then
) = 1) = 1 (x) = e =e*
- 1(0) = f(0) = F(0) = 4(0) - =" = 1

The Maclaurins series expression of f(x) is given by
f(x) = f(0) +xf'(0) +’;_T f1(0) + - +£l (0) +-------
x3 n

. 2
e, =1+ +2 +X 4o el p—
o2 3l n!

i) let f(x) =sinx then f(0) =sin0 =0
Then f(x) =cos x - fi(0) =cos0=1
fLY(x) = - sin x >f*1(0) = - sin0=0
fL11(x) = - cos x »f*(0) = - cos 0=-1
fV(x) =sinx ->fY¥(0) = sin 0=0

substituting all these values in maclarins series of f(x) given by,



f(x) = f(0) +xf(0) +; f11(0) +3_3 F1(0) 2 £(0) 4

. 2 3 4
S|nx:0+x(1)+"2_1(0)+"3_1 (_1)+’;_!(0)+ _____

iii) let f(x) = loge (1+X)
_ 1 _

0= > FO) =15=

__1 -1 _
100 =y =0 = 5= 1
ey = 2 iy =2
7060 = (1+0)3 -f (0)_(1+0)3 =2
IV(y) = 6 Vi) = =6 —
P00 = e ~ 0 = T =+

substituting all these values in maclurins series expansion of f(x) given by,
f(x) = f(0) + xf'(0) + il 1(0) += 11(0) e Y(0) +--—--
2! 3! 4!
2 3 4
we get , log(1-x) = 0+x(1) + ’;_' -1+ % 2 +% (-6) + ------

log(1+x) = x IS A S
2 3 4

Exercise: (E)

1) Obtain the maclaurins series for the following functions.
i) Cos x i) sinx iii) (1-x)"

2) Obtain the Taylor’s series expansion of sinx in powers of X - ”Z

3) Write Taylor’s series for f(x) = (1-x)>? with lagrange’s form of remainder upto 3 terms in the
interval [0,1].

Applications of definite integral’s
Definite integral:
Definition

Given a function f(x) that is continuous on the interval [a,b] we divide the interval into n
sub intervals of equal width Ax and from each interval choose a point , xi". Then the definite integral of
f(x) atobis



[ G0 dx = lim, o S, 067) Ax

The integration procedure helps us in evaluating length of plane curves, volume of solids of
revolutions, surface area of solids of revolution, determination of centre of mass of a plane mass
distribution etc.,

Surface areas of Revolution:

Equation of curve Axis of revolution Surface area
Cartesion form: " g= anb y\/l + (Lu)z dx
i) Y=o | : “
i) X=10) a s=2nf*yV1 + ()2 dy
c dx
X

Solved examples .
1) Find the area of the surfa e'of the revolution generated by fevolving about the

X — axis of the arc of the pasrabola y?=12x from x =0 to x=B
Y

Solution: giveny?=12x | _
y =2\/§ \/;a
ooz | X — 2
dx _2\/§ 2vx \/x
i
. Surface area ={2g " yV'1 + (*)2 dx
a dx

=21 [22v3VEV1 + Ldx
0 X
= 413 fj\/f\/l + %3 dx

1
=4n3 [ (1 +x)7 dx
3/2

_ x+3
=413 [3—/2]

=05 67~ 3%

= % (3)3/2 [ (2)3/2 _ 1]

=24n [2v2-1]
2) Find the area of the surface of revolution generates by revolving one area of the curve y=sinx

about the x — axis .

Solution: given curve isy = sin x



Here x varies from 0 to /2
- 2 =cosx
Hence required surface area

= o [Py 1+ (2 dx
=2nf:/zsinx VI + cos?x dx
=2 f(}m dt (putting cos x =t
=2n [% Vi+ez + %sinh’lt];
=2 %\/z+ 1} sin ht (1) - 0-0]
=xn[V2 +sin h'(1) ]

3) The area of the curve x = y®between y =0 and y=2 is revolved about y-axis. Find the area of

surface so generated.

Solution : given curve is x = y®

dx _ 2
Then e 3y’
. required surface area = 2x [ ; xV1+ (ﬁfj‘)2 dy
y

= 2nf02y3 V1 + (3y?2)2dy
=2nfly3 VI + 9yt dy
=2n ff“ﬁdt (putting 1+9y*=t)

w23, 1145
=— [= 2
TRER ]1

=T 32
> [(145)* - 1]
Exercise: (F)
1) Find the surface area generated by the revolution of an arc of the catenary y=C cos h ";about X—

axis ans:m cz[1+smllz2

2) Find the area of the surface of revolution generated by revolving the arc of the curve a? y=x® from x
=0 to x =a about the x —axis  ans: % [10V10 -1]

3) Find the surface area of s phere of radius ‘a’  ans: 47a’

Volumes of solids of revolution:



Region Volume of solid generated

Castesion form

i) y=f(x) the x — axis and the [V
lines x =
T
=a, x=b [
y
2
d
Solved examples: X
a
1) Eind the volume Qf a sphere of radjus ‘a’.
) ||)I v xuzge(y(s tﬁerilf ax?s an ut%ea v
Solutidines i
T
Sphere is the revolution of th¢.area enclosed by a semi circle its diameter
phere is (gL the revolu ] y
Equation to circle of radius ‘a’ is x?+y? =|a? ------- 1)

Then y? = a®-x?
In semi circle ‘x” varies from —a to a.
. Required volume == [ y2 dx !

=n " (a2-x?) d

= nla%x _x_3 12
ii) y=yi(d, y=ye () thex — | V=m [ (x? = 22 ) dy
. =n[a®-L+a% = a 2
axis and 3 3

— 2 _2a
ordinates x=a™28 5
3

_ 4ma

cubic units

2) Find the volume of the solid that result when the region enclosed by the curve y=x3, y=0, y=1 is

revolved about y — axis .

Solution :
Given curve is y =x°
Then x=y®

. Required volume =7tf01x2 dy

=nfy 0 dy



3 1
=55
=20
_3n .
=< cu. units
3) Find the area of the solid generated by revolving the arc of the parabola x? =12y, bounded by its

latusrectum about y — axis.

Solution:

Given parabola is

x 2 =12y =4(3)y (i.e X2 = day)
let ‘O’ be the vertex and LL? be the latusrectum as shown in fig.
for the arc OL, y varies from 0 to 3.

.. Required volume = 2(volume generated by the revolution about the y — axis of the area OLC)
=2n f03 x2 dy
=2r [J(12)y dy
23 P
= 247:[7](): 108x cubic units

2 2
4) Find the volume of the solid generated by revolving the ellipse ’;_2+ ”az_—l (0 < b < a) about the

major axis.

Solution :
Given equation of the ellipse is

X2 y2 _
2taTl

When y=0,x=+a (-a,0)

.. major axis of the ellipse isx =-a to +a
.. The volume of the solid generated by the given ellipse revolving about the major axis
_[a 2
= [ my? dx
=2n foayz dx
bZ
=om [ (b -2 ") dy
2 bz x3
=2n[b°x - = ?]g

= onba- L - (0)]

a? 3



2
=2on[ab?- 2] =% pab?
3 3
Exercise :(G)
1) Find the volume got by the revolution of the area bounded by x — axis, the catenary

y =acosh (%) about the x-axis between the ordinates x = +a

Ans : ma® (1+1sinh2
2

2 2

2) Find the volume of the solid when ellipse %Z? =1, (o< b< a) rotates about minor axis

Ans: 4nazb
3
Beta and gamma functions:-
Definition of improper integral :-
Consider the integral [ 2 f(x) such an integral for which i) either the interval of

integration is not finite i.e a=-ce or b =ce or both ii) or the function f(x) is unbounded at one or more
points in [a,b] is called an improper integral.

Eg:fm dx J-m dx ’ fl dx etc..,

0 1+xt ' J-o014x2 0 1-x2

Beta function:
The definite integral [ 3 x"~1 (1-x)™ dx is called the beta function and is denoted by B(m,n).
i.e., B(mn) = f; 21 (1-x)™* dx , m>0, n>0
Note : Beta function is also known as Eulerian integral of first kind, which converges for m>0, n>0
Properties of Beta function:
i) Beta function is symmetric i.e. B(m,,n) = B(n,m)
Proof: Since B(m,n) = fé 2L (LX) dX —emeeeee ()
We know that f[ff(x) dx = f(;’f(a —x) dx (from properties of definite integral)
S B(mn) = [ (1 —20)m ! [1-(1)]™ dx
_r1 _ -
= [y (1= x)n=1x" dx
= [} 21 (1%)™ dx = B(nm) from (1)
- B(m,n) =B(n,m)
i) B(mn) =2 [/?sin2m=10 cos*™6 do

Proof: We have B(m,n) = f; xm~1 (1-%)™ dx



Put x = sin?0 so that dx = sin20 do
- B(mn) = [*/? (sinz 8)m=10 (1-sin20)™ sin26 do
0

:fo"/z sin2m=20 cos*™2@ (2sind cosp) do
=2[7"% sin2m=10 cos”™*0 do
or f;/zsinzm*G cos?™1g do = %B(m,n)
iii) B(m,n) = B(m+1,n) + B(m,n+1)
proof: By definition of Beta function, we have

B(m+1,n) + B(mn+1) = f; X (1x)™ dx + f; =1 (1-X)" dx

= A @0 (1] d
= [ am=1 (1™ [x+(1-X)] dx
= [ am=1 (1-x)"™ dx = B(mn).
Hence B(m,n) = B(m+1,n) + B(m,n+1).

Note : If m and n are positive integers, then B(m,n) = (n-Lie-t
(m4+n—-1)!

Other forms of Beta function:
w xm-1 w an1
1) B(mn)=["—— dx =/

0 (1+x)m+n 0 (L+xym+n

1xMmLpen1
2) B(mn) =) ———
) (m.n) fo (14x)mtn

3) B(mn)=amb" fgo W

xm—1

dx

) 1xm—lyyn—1 B(m,n)

0 (14+x)m+n dX=a"(1+a)”‘

5) fab(x — b)m~1 (a-x)"! dx = (a-b)™"! B(m,n), m > 0, n>0
Solved examples:
1) Express the following integrals in terms of Beta functions

. 1 x .. 3
D N 0§



Solution :
i) Put x?=t
x=/t so that dx = 2%/? dt
Limits : Ifx=0,t=0

andx=1,t=1
L1 x _ 1Nt o1
Iy ===

=1 (11 -t)-1/2 dt
s ja-o-y
=1! f; t1-1(1 - /2-1dt = L B(1, L) (by definition of Beta)
2 2 2

i) Put x? =9t

x=+09t =3t

dx =2t dt

2

Limits : When x=0, t=0

x=3, t=1
.3 dx  _ 1 1 3 121
'fO Vo fo 9—ot zt dt
=3 f01(9 —9t)-1/2 g1 ¢
2
=3 (19)-1/2 12 41/2-1
Efo() /2 (1-y12 221 g
=3 1 (1gd-1 ;4 12
S R
1 1 1
=2BG.3)
2) Eval 2y
) Evaluate fom X
ion i 1 — (1,2 (1.95)12
Solution: consider fom dx = [, x2 (1-25)" dx

Let x® = t so that x = t°
and dx = £ 5 dt

Upper and lower limits are

When x =1, t=1
and x=0,t=0
2
Now f;% ax = fol x2 (1—x°)V2 dx

- fol £2/5 (1-t)12 1 151 gt
2



[ted 1021 dt

0
B

(5] Rt

1
5
3 B
Gamma function: 2
The definite integral [ g° e~* x™ dx, where in>0 is called gamma function and is denoted
by (n)
ie, (N)=[;e*xdx
Note : Gamma function is also known as “Eulerian integral of Second kind”, which converges only for
n>0 and diverges if n< 0
Properties of Gamma function:
i) (n)=1 (read as Gamma 1 = 1)
Proof: Wehave (n)=[7e™*x"!dx
()= J5 e X dx

= [y e dx=[e]=-(0-1)=1

i) (n)=(n-1) (n-1),where n>1
Proof: by definition, we have
()= [Te*x*dx=[x" **]° - [* n—1)x"2(°7%) dx
0 o "ol -1

(using integration by parts)

=—Lt L L0+ (n) Jo e xv2 dx

x>0 " ox

-1

=(n-1) [Je v dx (o L E— =0forn>1)
() = (1) [(n-1)
Note: 1) (n+l)=n (n)
2) If nisapositive fraction, then we can write
(n) = (n-1) (N-2) - (n-r) [(n-r) where (n-r) >0
3) if nisanon negative integer, then (n+1) =n!
An important relation between Beta and Gamma functions:

B(mn) = W M ynere m>0, n>0
(m+n)

Proof: from definition, we have ~ (m)= [ (°)°e—x X™Ldx - (1)
Put x=yt so that dx = ydt then (1) gives
(m) = fow eyt ym-l tm-1 ydt = J‘:ym e—ytm-1dt



Or% :fow €Y% XML g —eemmmeneee 3

Multiplying both sides of (3) by f(;” e Yymtn-ldy  we get
(m) fow ey dy= fomf Om e Y+ ymin—Tym=1gy dy -memmv (4)

Or (m) (n) :J‘w J-ooe_y(1+x) ym+n—1 dy X1 dx
0 0

( by inter changing order of integration)
- (® (m+n) -
m n) = ) yml
(m)(n) fo T x™dx, by (3)

xm—1
= (m+n) [ T X

(m+n) B(m,n) (from form(1) of Beta function)

Hence B(m,n) = %

Note :

n oM =5
2) (m+l)=n (nor (n)= ("+1)(n¢0, -1,-2,)
3)  (U)=+vrm

4) fowe‘x dx = %
5) f_om e dx= le

6) [° ex'dx=vir

7) (n) is defined when n is a negative fraction, But  (n) is not defined when n=0 and n is

negative integer.
Solved examples:

1) Compute i) (%) ii) (—%)

Solution : i) ()
We get that [(n) = (n-1) (n-2) ..... (n-r) [(n-r) where (n-r) >0

P =G-D G-D



=3.G-D G-D

ERANC

=22G-1 G-

"ii ©

:%.%.%.(2—1) (%—1)

R B A IO

=3.5.5. G-I G-D

=155 507

=355 (. (=)

i) 1) =2l =2 am=2vE

(. (n)= @ ) if n is negative fraction)
2) Evaluate
2
i) fo x (8-x3)M3 dx
. n/2
i) [, sin®0 cos™0 do
iy [7*\cotd do

Solution :
2
i 3\1/3
i) Jo x (8x%)M dx
Let x* =8t
X= (8t)1/3 =2t13
dx = 2 t13-1 gt
3
when x=0; t=0
x=2;t=1
. foz x (8-x3) W dx = f12t1/3 (8-81)M32_ {131 ¢t
3

=4 fol £1/3 [B(1-H)]8 13- it
3

= 8 [15-1 (1t dt
3°0



nition of Beta function)

n) = (1(1177)l+(7171))
(v (M=(-1) (n-1)
(. @)=

8 1.2-1
=-ft et dt
@ 7
=2 0(-0)
8 2 4
(by
_2 Elle) fiy
Py (B
2 4 4
_8 @G DG
3 @
_8 1 2 1
=33 @ @
_ 8 1 1
= @la-y
-8 ™ =16n

T SSin(/3) 93

i) solution : put2m-1=5 and 2n-1 =7/2
so that m=3, n = 9/4
We have fo"/zsinz’"—le cos?™0 do =* B(m,n)
2
< [y sin?m=19 cos™0 do = 1B (3,%)
1 30
2 (349
1 ®Q
2 (%1)
9.
@
. ®
TG
=64
" 1989
iii) solution:

m/2

5 Veote do =[r/2yeest g

sin®

= fo"/zsin—l/ze cos'?0 do

Pw2m-1=-1/2 and 2n-1 =1/2

Sothat m = 1/4,n = 3/4
Then fo”/z sin=1/20 cos'20 do = L B(m,n)
2

_1

2

13

BG.D)

(. B(mn) =@ )

(m+n)



1 @@
G+
-1 1 3
; @ @
1 1 1
=2 @ a-2
:l T
2 sin (§)
-1 m _ V2n -7
2 (1;) 2 vz
. 0 o 4x2 .. 1.9 3
3) evaluate i) [;"37**"dx i) f, x? (logl/x)* dx
Solution : i) since 3 =¢'°®

374x2 = ef4x210g3

f°° 3—4x? gy = f°° e—4x%log3 gy
0 0

t
4(log3
)

R
X 2iog3 @

Put 4x? log3 = t so that x? =

1 1
2+Vlog3 Z_\ﬁ dt

When x=0 ;t=0 (from
(1)) x=o0; t=oco

dx =

S 234 dx = [©e—4xPlog3 dx
0 0

= [Pe—t L t12t
J‘0 € 4log

1 bo —t 12
_W f(] e t dt
3

= Jy et v hdt
3
W (%) (by definition of gamma)

_ 1
- 4Vlog \/E
3

iy Put loglix=t ie, '=e orx=e'

sodx=-etdt
When x=1, t=0,
t=c0

fol x* (log L2 dx = [0 e=%t 13 (- dlt)
p "



= [ e Sttt

Pw- 5t=4 sothatdt=d?“
.l 1 — * _ 3.3 du
Sfoxt (log 2 dx= [y e () —

=2 [Te Pdu

625
I B R}
T 625 fo e U du

1 o _ -
= 4) (. (n)=f0 e~t t"ldt)
=3 _6

625 625

x8(1—x

© 6
4) prove that fo (IT)“) dx =0 using B-[ functions

Solution:
o x8(1—x6) _ pox8(1-x1h)
Jo am O =Jo e X
8 14)
_ X =X
o 1—n2* dx
%8 x4

_ [ ©
—Jo (1-x)24 ax - fo (1-x)24
x15-1

dx- [°——— dx

0 (17)5)15*9

o x9-1

o G
=BO.15) - B  (~pmn) =7 T )
=B (9,15)—B(9,15) (.. B(min) = B(n,m)
5) Evaluate [ x3VI—x dx using p- [ functions
Solution : f; BVT=7% dx = fol (1 =0)M2 dx=[leat (1= x);71 dx
=B(4. %) (using defn of Beta function)

-0 . - _m (@

e (b= G20
CXE

= —% (o (m=C1)!)
)

_ 31.(3/2) _ 314 - 32

TI7T53 3 T 9753 315

22272 2
x2

6) Evaluate 4 f0°° dx using B - [ functions.

1+x4

. . _ _ 1 2
Solution: put x=+tan0 sothat dx= T Sec 6do



Also when x =0, 0=0

And where X -- o, 0--11/2

w x2  _ n/2 tan® 1
. =4 — 2
-4 fO 1+x* fO 1+tan?0 2Vtan® sec’d do

= 4f0"/21\/tan9 de
2

=2 [r/2ede

cos
=2 [7/*sin1/2 cos26 do

Put 2n-1 =%z and 2n-1=-1/2

= m=3/4 and n =1/4
=2, ; Bmn) (.. f;f/ % sinl/2 cost20 do

=pC.2) == B(mn)

4 4 2
_f . __m
=55 (- Bmn) = 20 )

@ a-9  (~ O
=1L/2 =Vir

dx
—x2

2
7) Show that f;‘/% dx  x 01\/1_

18

. _ 1 %2
Solution: letl = [ == dx
Put  x?= sin@
So that x? = sin'/2 §

dx = % sin*2@ cosd do

_ 1 22 — (m/2__sinb 1 winli2,
L= fy = O T g 5 SN0 cosd do
=1 fg/zsirﬂ/ze cos’0 do
2

Put 2m-1 = 1/2 & 2n-1=0

=1 1p31 (- ™2 sin2m-19 cos™ o=LB(m,n)
2 2 4 2 0 2
3 1
_1 @R . _mm
=2 (%Jr%) (-.B(mn) = )
1 O Va

(. G)=vVm)



=i _ @ (L m=(n)

T
O PR [ o — (1)
[15)
_r1 dx
Now letlz = 0 T

Put x2=sin®  so that x =sin20

dx =%sin1’29 cos® do
. _fl dx =f11/21 sin71/295039
B e 0 2 Vi-sinZe
1 2 .
=L ("2 5in-1/29 do
270

= 1 [™25in-1/29 cos do
2 0

(n-1)

11 11
=2 2P
L dd ) ()
=2 4 2 . —_(m) (n
4 (:1}+%) (”ﬁ(m’n) (m+n) )
Ve (G
T 2)

4((3/4)
From (1) &(2)
_VEld v (0

x| :flxzdx X fl - x ¥E
1A =)y Tt YTt 4((1/4) 4 F(%)
- T

4

1_x? 1 d d
8) Prove that foﬁ dx x 0\/?% = 15

1 x%dx

Solution : Ietllzfom
Put  x’=sind i.e.,x=+sin® so thatdx =

When x =0, 6=0
When x =1, 6=n/2

= J‘n/Z sin@ cos0do
0 V1-sin20 2vVsin®

=L [ 5in1/20 do
270

=1 "% 5in1/20 cos do
20

=113 1
_z'zﬁ(4’2

1

2Vsin@



—~

Sn
L

-
N7

(
1
17

N

~
L

N

@
D)

el

NG )
7 5 . 5 -~
+ G-1 G-D

1 dx
0 V1—x%

Let I>=

2
2 _ dx = S¢¢ [Y
Put x* =tan@ so that = dg

- _J-n/4 sec?@
27 Jo 2Vtan2@tand

2
=1 n/4 sec@
2 fO sec@ Vtan@ a9
=1 fn/4 dg
2 "0 <sinf@cosB
=2 4 dg
2 0 sin

-1 fn/z cos@ dg
V2 70 Vsin2@

1 w/2 dt R
= ﬁ fO W (puttlng 20 = t)
2
= 21% f;/ sin~1/2¢ dt
1 /2
=55 J, sinV/2t cos’tdt
Put 2m-1 =1/2 and 2n-1=0
So that m=3/4 and n =1/2

=L @D v @ )
Wz g w2 O
o From (1) & (2),
_ 01 x%dx 1 dx
hxb=fy = )y i
3 1.
) w2 ()



(—1)mn!

9) Prove that ftx"‘ (logx)" dx = T

where , n, a positive integer and m >-1

Solution :
Put logx =-t sothatx = e
dx =-etdt
Also when x =0, t=c0
x=1 ,t=0
folxm (logx)" dx = [*(e=t)™ (-t)" (-e dt)
= (-1)" f;” e~ Om+ e dit
= (_1)n f0°° e~ (m+Det(-1)-1 gt

= ()= (e xt dx= > 0, k> 0)

(m+1)n+1
- (71)nn!
(m+1)n+1
Note: ['em (log)rdx= —tD)
) x (m+1)n+1
10) Show that
. L m
) [ e dx=— (n>0,k>0)

i) e dy=m (m)
Solution :
i) We know that  (n) = [°x"~1 dX ------- (1)
Put x=0,t=0
X =co , t=co
() = f7e ™k (k)™ (kdt) (from (1))
=k [ e ket dt

=K' [ ek X dx

(n)

®
Or [yxnle®dx= 4

ii) Put y¥™=x i.e.., y=x" sothat dy = mx™* dx
e dy = [T e (mx™) dx
=m f0°° e~* x™L dx

=m (m) (bydefinition of gamma function)



Exercise :(H)
1) Evaluate [{x*VaZ —x7 dx z
32
2) Showthat [, x* (1- (x)° dx = 2((10,6)

0 871,06
3) Evaluate fo YU gy ans: 0
(

1+y)24
/2 _ &
4) Show that fO VsecO do _T(S;
7

5) Prove that [™?vcosxdx x [™? _dx_
0 0 cos

6) Evaluate [, szgx ans : Vi

n/2 _
7) Evaluatef0 Veand+ Vseeb-do o 1 (12)4_(%]

oo 2
8) Provethat [vxeXdx x e~ e dx using B - [ function and evaluate
0 0 9

a2
9) Show that [;Vxe 2 dx x f{;’% dx =—=

= oo . 3 3
10) Evaluate fo x8 e”2 dx x fo xBerdx  ans: (_) (@)
2 4 8

Objective type Questions

1. The value of c of Rolle’s theorem for f(x) = Si%in ((0,1m)is

m m m
2. Using which mean value theorem, we can calculate approximately the value of (65) in the
easier way
a) Cauch’s b) Lagrange’s c) Taylor’s Il order d) Rolle’s

3. The value of Cauchy’s mean value theorem for (x) = e* and g(x) = e™ defined on [a,b], o<a<b is
) vab Db 0L d) 22

4.1 f(x) is continuous in [a,b], 1(x) EXdsts for every value of x in (a,b), f(a)=f(b), there exists at
least one value ¢ of x in (a,b) such that f'(c) =



1

11.

[ N

12.

13.

o

a 0 b) a+b c)c d)b

. Lagrange’s mean value theorem for f(x) =sec x in (0.2IT) is

a) Applicable b) not applicable due to non-differentiability

c¢) applicable and czg d) not applicable due to discontinuity
2 2
F(a+h) = f(a) + hf'(a) + % @) + oo % f(a+6h) is called

a) Taylor’s theorem with lagrange form of remainder
b) Caughy’s theorem with lagranges form of remainder
¢) Raiman’s theorem with lagrange form of remainder
d) Lagrange’s theorem with lagrange form of remainder

Iff(x) =f(0) + .......... F'(0), g then the series is called
a) Maclaurin’s Series b) Taylor’s Series
c) Cauchy’s Series d) lagrange’s series

The value of Rolle’s theorem in (-1,1) for f(x) = x3-x is
a) 0 b) + % ) % d) + %

The value of X so that f“’)b_&fl(x) whne a< x<b given f(x)= %, a=1, b=4

3 ; OEREONS S

The value of ¢ of Cauchy’s mean value theorem for the function f(x) = x?, g(x) = x%in the
interval [1,2] is

14 3 17 5
If f(0)=0, f1(0)=1, f'(0)=1, f"'(0)=1, then the machlaurin’s expansion of f(x) is given by

x2 %8 x2 %3
a) X+—+— +.... byx+—+—+ ...
2 3 2 6

x2 %3 X2 3
c) -X-7+? +.. d)X'7+? +....

The value c of Rolle’s theorem in [15,2] for f(x) =x2 + ;—2 is
2 2 b)< 01 03

Lagrange’s mean value theorem for f(x)=secc in (0,2mx) is

a) Not applicable due to discontinuity b) applicable & c= ﬂE

c) not applicable due to non differentiable d) applicable



14. In the Taylor’s theorem, the cauchy’s form of remainder is

hn=1fn=1(a—6h)

w Ln

b) h" " (a+0h)

) A6 a0h) gy 2 (amom)
Ln-1 Ln

C

15. The value of ¢ in Rolle’s theorem for f(X) = sinx in(0,ma) is

a) = DL X  d -

16. The value of ¢ in Rolle’s theorem for f(x)=x?-x in (-1,1)
a) 0 b) 0.5 ) 0.25 d)-0.5

17. The value of ¢ in Rolle’s theorem for f(x) = x?-x(0,1)
a) 0 b) 0.5 ) 0.25 d)-0.5

18. The value of c in lagrange’s mean value theorem for f(x) = *in (0,1) is
a) Log(e-e™) b)loge(c) c) log(e+1) d) log (e-1)
19. The value of ¢ in Cauchy’s MVT for f(x)=e* and g(x) = e™in (3,7) is

a) 4 b)5 C) 45 d)6
20. The value of 0 if f(x)=x*> &

f(x+h)=f(x)+hfi(x+6h) a) -05  b)0.25¢)0

d) 0.5 - % in (1,4) is

21.The value of ¢ in Cauchy’s mean value theorem for f(x) =vx and g(x) =

22. The value of ¢ in lagrange’s mean value theorem for f(x) = logx in [1,e] is
a) 15 b) 2 ) 2.5 d)3
ag (e-1)* b) e+1 c)e-1 d)ye

23. Lagrange’s mean value theorem is not applicable to the function f(x) = x31 in [-1,1] because
a) F(-D#(1) b) f is not continuous in [-1,1]
c) fisnot derivable in (-1,1) d) f is not a objective function
24, Lagrange’s MVT is not applicable to the function defined on [-1,1] by f(x) :xsinl;(xio) and
(0)=0 because
a) F(-1)=f(1) b) fis not continuous in [-1,1]
c) fis not deriable in (-1,1) d) fis not a one to one function
25.  The value of c for lagrange’s MVT for the function f(x) =cosx in [0, ”E] is
a) Cost(® b)sint(® c¢)sint(}) d)Cost ()
™ ™ ™ ™

26. The value of c for Rolle’s theorem for f(x)=(x-a)(x-b) in [a,b] is



a) —# b)vab c)atb d)#

27. The value of ¢ for lagrange’s mean value theorem for f(x)=(x-
2)(x-3)in[0,1] isa) 0.5 b) 1 c)25 d)2

28. The value of ¢ of Rolle’s theorem for f(x)=(x-1)(x-2) in [0,3] is
a) 15 b) 2.5 c)3 d)2

29. The value of ¢ of Cauchy’s mean value theorem for f(x)=sinx and g(x)=cosx in [0, ”5]

95 BT oF o3

30. Maclaurin’s expansion for log(1+x) is

x2 x3 x* x2 x3  x*
Q) X-—+t—-— + ... D)X +=—+=+= +....
2 3 4 2 3 4
x2 x3  x* x2 x3  xt
b) )x+—=—+—+—+ .  dX-=+—-—+ ...
20 3! 4! 20 30 4

31. Maclaurin’s expansion of cosx is

o KT o  (—1)TK2T
Q) Xlogy b) X0 G
o (=1)T(K2r+1 o Kertl
0 Xr=o (2r+1)! d)2r=0(2r+1)!
32. The expansion of e* in powers of (x-1)
o (1=K)F 1ve (A-KF
8) E(Xr, ) b) e Xy =2
o (=DTK-D)F o (“DFK-1)F
0) eErg ) d) B,

33. The expansion for sinx in powers of (x-”;) is
Sl-Ty2 4+ L -Ty4
a) 1 2(x 2) +4(x Z) ..................
Iy 4 1y T3
b) x+(x Z) +3 (x Z) Fo
1, m\2 o1, T4
©) Ty ()2 45, O + o
d) x- (x02 + L3+
2 3! 2
34. Volume of the solid generated by revolving y=f(x), the x-axis and the lines x=a, x=b is
b b b
a) [ mx2dx b)[ m(y?-x?)dx c¢) [ my?dx d)none
35. Volume of the solid generated by revolving the area bounded by the curve x=f(x), the y-axis and
the lines y=a, y=b is
a) [Prxzdx b) [Pmxzdy o) [Pmx2dx d) [Pry?dy
a a a a

36. The volume of the sphere of radius ‘a’ units is



37.

38.

39.

40.

41.
42.
43.

44

45.
46.
47.

48.
49.

50.

59
60

3
] 3 4
) 5 D5 gm’ )=

The surface area of solid generated yb revolution of circle x?+y?=r? about the diameter is

2 2
2mab? 4mba 4mab 2
a) 3 b) 3 c) 3 d) 4nab

b) r’m b)2r’n c)3r’n d) 4r’n
The surface area of solid generated by revolution of circle x>+y?=r? about the diameter i)
a) r’n b)2rfz )3’z d)3r’n

fo"/zsin3x cos”? x dx =
fon/z sin7x dx =

[ tant2g a0 =
((3/4) 1(1/4)=

J x6 e dx =

1 xd _
'foxfﬁ_

The value of [™/?

o sinP0 c0s?0 d@ in terms of B function in

The value of ((-1/2) =
The value of ((1/2) =

The value of ((1) =

The value of B(l,i) =
22

The value of [ (%) [ (31) =

. The value of [;°x~k* x™ dx (n>0, k>0)

. The value of B(1,2) + B(2,1) =

. Interms of B function [° sin’6vcosB do =

-B(pt1,2) +B(p.a+l) =
. The relation between beta and gamma function is

. fome‘xz dx =

S0 e dx=

[0 e dx =

. fo"/z sin2m=19 cos™9 dO =

. Ifnisanon negative integer, then ((n+1)=



UNIT-V



FUNCTION OF SEVERAL VARIABLE

A Symbol ‘Z’ which has a definite value for every pair of values of x and y is called a function
of two independent variables x and y and we write Z = f(x,y).
The function f(x,y) defined in a Region R, is said to tend to the limit ‘1” as x—a and
y—b iff corresponding to a positive number e, There exists another positive number & such that
| f(x,y) —1| < e for 0 < (x-a)? + (y-b)? < &% for every point (x,y) in R.
Uity
A function f(x,y) is said to be continuous at the point (a,b) if
Lt f(x,y) = f(a,b).
X—>a
y—b

An expression of the form,

X"+ axXty+ Xy -ty in which every term is of n" degree, is called a
homogeneous function of order ‘n’.
Euler’s Theorem:-
If z=1(x,y) be ahomogeneous function of order ‘n’ in x and y, then X % Y%:nz
ifu="f(xy)

where x = ¢(t) , y = y(t)

then u =gudx +gdudy

2) if f(xy)=c

then
dy = - (Oulox)
dx (ouloy)
3) if u = f(x,y) where x = ¢(s,t), y = y(s,t)
then
au = au X o+ ou oy
0Os ox 0s oy 0Os
ox t ou  Ov

Eulers theroms_problems;_
ot ox ot oy ot

1.Verify Eulers therom for the function xy+yz+zx
Sol;  Let f(x,y,2)=xy+yz+zx

f(kx,ky,kz)=k?f(x,y,2)

This is homogeneous fuction of second degree



6f_ 6f _ 6f _
We have P 4 g;—x+z XY

6F 4\ 6f 4 6f
XEE 4y 0T 1280 =x(y2)+y(xr2) +2(x+y)
SXY+XZHYX+YZ+ZX+ZY

=2(xy+yz+zx)
=2f(x,y,2)

PROLEMS:
1.Verify the Eulers therom for zz%
x2+xy+y
2.Verify the Eulers therom for u= sin~1*+tan-12
y X
3.Verify the Eulers therom foru= x2 tan—! y; y2tan~1! "; and also prove that
62u _ x2-y?

6x6y  x2+y?

Jacobian (J) : LetU=u (x,y), V=Vv(x,Y) are two functions of the independent variables x , y. The
jacobian of (u,v)w.rt(x,y)isgiven by

| I;: u‘ |Note :J(L:—";ij(ﬁ—*\%jzl
Similarly of U=u(x, y,z),V=v(XYy,2),W=w(XY,2)

Then the Jacobian of u,v,ww.rtox,y, zisgiven by

U, U, U

1. Ifx+y’=u,y+z22=v,z+x*=wfind oy, 2)

o(u,v,w)
Sol: Givenx+y?=u, y+z2=v,z+xX*=w

U ’li.:l. U 1 E_‘.' ]
We have 'y Pz = |0 1 2=z

W v W, W 'z 2% 0 i

=1(1-0)-2y(0 —4xz) + 0
=1-2y(-4xz)
1
[=3 =







2.S.Tthefunctionsu=x+y+z,v=x2+y?+22-2xy—2yz-2xz  and w=x3+y® +2%-3xyz
are functionally related. (°07 S-1)
Sol: Given u=x+y+z

V=X + Y+ 72 -2xy — 2yz -2XZ
w=x3+y? + 23 -3xyz

we have
U, U, U
= v, Vg Vs
H-'x H-'I H-'z
1 1 1
= |2x =2y -2z 2y = 2x =2z Jr =2y —2x
Ix? =3z 3y = 3xz 3z°— 3xy
1 1 1
=6| x—yv—z Vv—x-—=z I—y—x
x?—yz vi—xz z? —xy
C1=>C1-C2
C2=>C2-C3
1] 1]
=6 2x— 2y 2y—2z I—y—x
x?—vz—v? oz vi—xz—z% +xv z? — xy

=6[2(x - y) (Y2 + Xy —xz -2 )-2(y - 2)(* + xz - yz - y?)]
=6[2(x - Y)Yy -2)(x +y +2)-2(y - 2)(X — y)(X + Y + 2)]
=0

Ifx+y+z=u,y+z=uv,z=uvw then evaluate (’06 S-1)

Sol: x+y+z=u
y+z=uv
Z=uvw
y=uv—uww = uv(l —w)

X=u-uv =u(l-v)

1—v —u Q
= (v(l—-w) ull-w) —uv
vw uw uv
R2=>R2+Rs3
1—v —u Q
= v u Q ‘
i uw uv




=uv[ u-uv +uv]

= v
4. Ifu=x>-y?,v=2xy wherex=rcos#,y=rsin 8 ST sr:u\\ =4r° (07
Sol: Given u=x2- v =2xy
Y 8 '8 8 8
=r2§|os2 - =
rsin? el 2rcos
8
Afury L W, Ug ..’.:'rn—.,"'.rsT r_:l'—::in??).)? |
arrd = I"|2 v, vy | 2rein28 " 5"'!2 {ras2)2
cos
( ros2f —rzin2 8
—sin? ‘ sin2# r (cos28) ‘
=12 cos2 =4r?[rcos?28 + rsin26 ]
_ =4r2(r)[ cos’26 + sin*26]
.Ifu= 2 v=" we o (ipdri (08 S-4)

Sol: Givenu= T

We have

v, =1 , W
W, =2 , W

Uy:': , Uz ==

xz(-1y?) = == y, =1

ow=xy (U2 =7

- .
L'+ 3 L
x —
= =
—vyz Xz €y
L vz —xz Xy ‘
= vz xz —xv

S-2)



-

= 1[-1(1-1) -1(-1-1) + (1+1) ]

=0-1(-2)+(2)
=2+2
=4
Assignment
Bl WE) oo _ _ _
Calculate oo — X=20 Y= %% z= 7 and u=rsiné cosd, v=rsind sind w=r
cosg
6. Ifx=e"sech,y= e tan P.T ;{‘0" ) =1 (’08S-2)
Sol: Given x =¢"sed? ,y = €' tand
Axa) —| ¥, g aird) _‘ e T ‘
airo Ve vg | Fiman | H,8
x,=e"secld =x, xg=e'sect tand
v.=e'tanf =y , vg=e sec?f
X2 — y? = %" (sec?d - tan’f)
= 2r=log (x> —y?)
= r=%log (X -y*)
- - 1 —_ &
=% (332 (23 = (%2-v2)
- 1 —
Ty = (m2-v2) (2 = (w2-v2)
—med _ _jeozd A
T ek T mnd/coxd | mnd
o imf =X B=ginlF)
1 1
Bx = ﬁy( -r=) : \.\:-_‘.'\:
AT e
g, = -1 ===
S5 T
arxsy _ |eTsecf tand| _ 5, Coar
7 | eremcan | S ESEC g -ye'secttan @

= e? sec B[sec?? - tan?8 | = e*" secd




= | . _'__ |: 0
If the Jacobian of u, v is not equal to zero then those functions u, v are functionally independent.

o . - for f . fasi -
To find the Maxima & Minima of f(x) we use the following procedure.

(i) Find f(x) and equate it to zero
(iiy  solve the above equation we get Xo,X1 as roots.
(iiiy  Then find f(x).

If f11(X)(x =x0) > 0, then f(x) is minimum at xo

If fY(X)x=x0),< 0, f(X) is maximum at xo. Similarly we do this for other stationary points.

PROBIEMS:
1. Find the max & min of the function f(x) = x°-3x* + 5 (°08 S-1)
Sol : Given f(x) = x® -3x* + 5
f1(x) = 5x* — 12x°

for maxima or minima  f'(x) =0

5x* —12x°= 0
X=0,x=12/5
f1(x) =20 x* - 36 X2
At x=0 =>f(x) =0. Sof is neither maximum nor minimum at s = 0

At x=(12/5) fH(x) =20 (12/5)° - 36(12/5)
=144(48-36) /25 =1728/25 >0
So f(x) is minimum at x = 12/5
The minimum value is f(12/5) = (12/5)° -3(12/5)* +5



Working procedure:
1.  Find :_ and j_ Equate each to zero. Solve these equations for x & y we get the pair of values

(a1,b1) (az,b2) (@3 ,b3) «evveeeeenenn

Find1=9"f = ¢ 2f
2. m — ,N= —
ox? o x oy oy
i) IFIn-m?>0and I <0 at (ai,b1) then f(x ,y) is maximum at (a1,b1) and maximum value is
f(ai,by) .

i) IFIn-m?>0and I>0at (ai,bs) then f(x y) is minimum at (a1,bs) and minimum value is
f(ai,by) .

i) IFIn-m?<0and at (a1,b1) then f(x ,y) is neither maximum nor minimum at (as,ba). In this
case (ai,b1) is saddle point.

iv) IF In-m?=0and at (a,b1) , no conclusion can be drawn about maximum or minimum and

needs further investigation. Similarly we do this for other stationary points.
PROBLEMS:
1. Locate the stationary points & examine their nature of the following functions.
(07 S-2)
u=x*+ y* -2x2 +4xy -2y?, (x> 0,y > 0)
Sol: Given u( x ,y) = x* + y* -2x% +4xy -2y?

For maxima & minima 6_u=0, =0
OX oy
%:4x3-4x+4y=0:ngx+y=0 """""""""" > (1)
ESAP XY =0 5 P AX-Y S0 e >
Adding (1) & (2) ,
X +y =0
==X =Y > (3)

Hence (3) =>y=0, -2, 42

1=0f 100 4, m= 2
aXZ -1

In—m? = (12x* —4)(12y* - 4) -16
At(—=+vZ, V2),In—m?=(24-4)(24-4)-16 =(20) (20)—16 >0



The function has minimum value at (— 2, +2)
At (0,0), In—m? = (0-4)(0-4) -16 =0
(0,0) is not a extrem value.

Investigate the maxima & minima if any of the function f(x) = x*y?(1-x-y).

(08 S—4)
Sol: Given f(x) =332 (1-x-y) = x3y% xty? — x3y°
:—‘ = 3x%y? — 4x3y? -3x%y° s— = 2x3y — 2xy -3x%y?
For maxima & minima % =0and Z— =0
2 33X —4x%y? 3%y = 0
2 23y -2y -3x%y? = 0
From (1) & (2) 4x+3y-3=0
O L1 R — X3

=> x%y?(3 —4x-3y) =0 -

2x=1=>x=%
4(%)+3y-3=0=>3y=3-2,y=(1/3)

I — o f =6 2 2,2
= —— =6xy*12xy? -bxy’
azf \ = 2 2 2 3 = —
\F} ez = 6(1/2)(1/3)7 -12 (1/2)*(1/3)* -6(1/2)(1/3)° = 1/3 - 1/3 -1/9 = -1/9
X
o*f u
m :_axay = %( j—' ) =6x%y -8 X3y — 9x%y?
2f ) 2 3 2 3 _ F—#-3 _ -
KaX_ayJ (1/2,1/3) = 6(1/2) (1/3) -8 (1/2) (1/3) -9(1/2) (1/3) = - = I

n= Z— =233 -2x* -6x3y

@;ﬁ } W = 2(L2)° -2(U2)° BU2AB) = -1 = -
In- n? =(-1/9)(-1/8) ~(-1/12)? = - == =""1 ="~ >0

The function has a maximum value at (1/2 , 1/3)

3. Find three positive numbers whose sum is 100 and whose product is maximum.
(08 S-1)



Sol: Let x ,y ,z be three +ve numbers.
Given x +y +2z =100
= Z=100-x-Yy
Let f (x,y) = xyz =xy(100 — x — y) =100xy —x?y-xy?
For maxima or minima ZT =0and Z— =0
£ =100y ~2xy-y? =0 =>y(100- 2X —y) =0 =oromemeomeoees > (1)
j— = 100X X% -2Xy = 0 => X(100 —X -2y) =0 =ormemmmemmmemnes > (2)

From (1) & (2)
100-2x -y =0
200 -2x -4y =0

100 +3y =0 =>3y=100 =>y=100/3
100-x (200/3)=0  => x=100/3
I = 62 f

= 2y

o’ f
(100/3 , 100/3 ) = - 200/3
ox?

o’ f

- =22y 22X -
m_axay m-(e-.-) 100 -2x -2y

(21 (100/3 , 100/3 ) = 100 —(200/3) —(200/3) = -(100/3)
\axay )

_ o

n= By =-2X

2
[Zy—ﬁ} (100/3 , 100/3 ) = - 200/3

In -m? = (-200/3) (-200/3) - (-100/3)> = (100)?/3
The function has a maximum value at (100/3 , 100/3)
ieatx=100/3,y=100/3 .z =100-100 100_100
3 3 3
The required no. are x = 100/3, y = 100/3, z =100/3
4. Find the maxima & minima of the function f(x) = 2(x? —y?) —x* +y* (°08 S-3)
Sol: Given f(x) = 2(x%2 —y?) —x* +y* = 2x% —2y? x* +y*
For maxima & minima ZT =0and ;— =0

L o4x-4x =0 =>4x(1x) =0 =>x=0 ,x=x1



oay+ay=0 =>-4y(1y) =0 =>y=0,y==1

1= =412¢
Bl
m= o) =0
alay
n=232 =.4+12y

we have In —m? = (4-12x?)( -4 +12y? ) -0
= -16 +48x? +48y? -144x%y?
= 48x% +48y? -144x2%y? -16
) At(0,+1)
INn—-m2=0+48-0-16=32>0
1=4-0=4>0
f has minimum value at (0,+1)
f(xy)=20¢ -y’ x* +y*
f(0,£+1)=0-2-0+1 = -1
The minimum value is ‘-1 *.
ii) At(+£1,0)
In—-m?=48+0-0-16=32>0
1=4-12=-8<0
f has maximum value at (+1,0)
f(xy)=2(¢ -y x* +y*
f(+1,0)=2-0-1+0=1
The maximum value is ‘1 *.
i) At (00),(+1,+1)
In-m? <0
I=4-12x2
(0,0) & (+=1,+1) aresaddle points.
F has no max & min values at (0,0), (+1,=+1).

Assignment

1. Find the maximum value of x,y,zwhenx +y+z=a.




*Extremum : A function which have a maximum or minimum or both is called
‘extremum’
*Extreme value :- The maximum value or minimum value or both of a function is

Extreme value.

*Statiopary points: - To get stationary points we solve the equations Z_ =0and

2r =0i.ethe pairs (a1, b1), (a2, b2) .............. Are called
3
Stationary.

Suppose f(x, Y, z) =0 ------------ (1)
B(X,y,2) =0 --mmmmmmeee )
F(x,y,z)=f(x,y,z)++@(x,y, z) where ¥ is called Lagrange’s constant.
OF — =< 8F .. 80 _
L 220 2> 4y SR =0 s @)
OF o —8f 439 g (4
oy a
oF _ ) - -
E_O i e (5)

2. Solving the equations (2) (3) (4) & (5) we get the stationary point (X, v, z).
3. Substitute the value of x , y, z in equation (1) we get the extremum.
Problem:
1. Find the minimumvalue of x? +y? +z? given x + y + z=3a (’08 S-2)
Sol: u = x2 +y? +7?
f=x+y+z-3a=0
Using Lagrange’s function
Fx,y.2)=ux.,y,2) +y0(x.y.2)
For maxima or minima

OF _&au . 80_ =

o e TP a T XA 0 1
oF du ap

— =— +1 =2y + ¥ =0 - 2
PV y 2
FE =22 4y o074y =0 s @)

From (1), (2) & (3)
¥ =-2Xx=-2y=-2z



B=x+x+x-3a=0
r=a
'-_':y:z:a

Minimum value of u =a? + a® + a®> =3 &
Fill in the blanks-

1. if u=x+y and v=xy then

2.ifx=g"cosv, y= @ ginvthen

() ————

6. Two functions u and v are said to be functionally dependent [

x T+ W,
7.1fu=—and v= thenf ( ) =
¥ L=

XV

8. If u=g" siny,v=" cosy then

. (51 () ———

10. If x=rcos &, y=rsin  then ] (L)=

W

11. If u=3x+5y and v=4x-3y then

¥ W,
13. If u=— and v=xy then f (:)=



OBJECTIVE TYPE QUESTIONS

14. 1f u=x 2 - 2y ,v=x+y then ;

(@ [x+ 137 (b)2(x+1) () 3(x+1) (d) None
uw.w .J\.l
Jfu(1v)x, uvsy then [ (22) 7 (22 -
16. If u(1-v)=x, uv=y then | (x&_) ] (lw)
(a)o (b) 1 (c) xy (d) None

L ,—1Y then (ﬁ) CpfEay =
17.1f U—I_“ § cv=tan” = x+tan )r x¥ ] (u.v)
(2)0 (b) 1 (c) xy (d) None

R — PR
18. Are u=xy L — 1=, v=2x functionally dependent? If so what is |-.;-_ || ?

(a) yes,1 (b) yes,0 (c) No,0 (d) None

19.1f u=x 2 is

yy= 2 2 2.2 2,2 2,2
= o g 03
(a)5

(Assignment Questions)

{ Functions of Several Variables}

1 IEx4yP=u , y+zi=v 2+ X=w find S22

2
2. If x+y+z=u, y+z= uv, z=uvw then evaluate

dlu

3. S.T the functions u=x+y+z, v=x?+y’+z2-2xy-2zx and w=x3+y*+z%-3xyz are functionally
related.

4. Find the max & min values of the function f(x)=x®—3x*+5.
Find three positive numbers whose sum is 100 and whose product is maximum.
Locate the stationary points & examine their nature of the following functions — u=x*+y*-
2X2+4xy-2y? (x>0,y>0).

Biu

(x

7. If u:L.-",v:""',W:E,find
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FEUNCTION OF SEVERAL VARIABLES

. f | iabl
A Symbol ‘Z’ which has a definite value for every pair of values of x and y is called a function
of two independent variables x and y and we write Z = f(x,y).

imit of jon fx.v):-
The function f(x,y) defined in a Region R, is said to tend to the limit ‘v’ as x—a and

y—b iff corresponding to a positive number e, There exists another positive number & such that

| f(x,y) —1|< e for 0<(x-a)+ (y-b)? < & for every point (x,y) in R.

ity
A function f(x,y) is said to be continuous at the point (a,b) if

Lt f(x,y) = f(a,b).
X—a
y—b

Homogeneous Function:-
An expression of the form,
X"+ aa X"ty + axPyY -+ Ay in which every term is of n degree, is called a
homogeneous function of order ‘n’.
Euler’s Theorem:-
If z=1(x,y) be a homogeneous function of order ‘n’ in x and y, then X Z—i+ YZ—i:nz
| atives:-
if u="(x,y)
where X = ¢(t), y = y(t)

then du =gudx +dudy
dt ox dt oydt

2) if f(xy)=c

then
dy = -(aulox)
dx (ouloy)

3) if u = f(x,y) where x = ¢(s,t), y = y(s,t)

then
au = aou oX + au aoy
0s OX 0s oy 0s
ou = gu Qox + Qu 0y
ot Ox ot oy ot

Eulers theroms problems;

1.Verify Eulers therom for the function xy+yz+zx
Sol;  Letf(x,y,z)=xy+yz+zx
f(kx,ky,kz)=k?f(x,y,z)

This is homogeneous fuction of second degree
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6f _ 6f _ 6f
We have g;-y+z g}—1-x+z XFY

Xy +Yer +20 =X(y+2)+Y(x2)+2(x+y)
=XY+XZHYX+YZ+ZX+Zy
=2(xy+yz+zx)
=2f(x,y,z)

PROLEMO:

1.Verify the Eulers therom for z= :

T )2 Hxy+y2
2.Verify the Eulers therom for u= sin=1"#tan-17
y X
3.Verify the Eulers therom for u= x2 tan—!%~- y2 tan—! "; and also prove that

X
62u _ XZ_yZ

6x6y  xZ+y?

Jacobian (J) : LetU =u (x,Yy),V =V(x,y) are two functions of the independent variables x , y. The
jacobian of (u,v)w.rt(x,y)isgiven by

e X,y u,v
Similarly of U=u(x,y,z),V=v(X,y,2) , W=w(X, Y, 2)

Then the Jacobian of u,v,ww.rtox,y, zis given by

. U, U,
JEZ) = d2o . Note : 3| LY |y XY )1
e Bz . V.

. u, U

wew CIETRER Ty T a3
J ( ) = — - = Y= Yy Vg

E & (=) W W, W,

L Ifx+y?=u, y+2=v,z+x =wfind J%Y.2)

o(u,v,w)
Sol: Given x+y?=u, y+z?=v,z+x’=w
i U, U, U 1 2y 0
We have Z =| Vx Vy Vg =|0 1 2z
L W, W, W 2 0 1
=1(1-0)-2y(0 - 4xz) + 0
=1-2y(-4x2)
=1+ 8xyz
8 ix.y.2) 1 1
= dlurw) [ELU“] T o1+ Buvz
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2.S.Tthefunctionsu=x+y+z,v=x2+y?+ 7% -2xy — 2yz -2xz

are functionally related. (07 S-1)

Sol: Given u=x+y+z

vV =X+ Y2+ 72 -2xy — 2yzZ -2X2Z

w=x+y* + 7% -3xyz

we have
U, Uy, Ug
ICTEERTE — v, v, v,
9 (x.2) ‘ W, W, W, ‘
1 1 1
= |2x — 2y — 2=z 2y—2x -2z 2z — 2y —2x
3x% — 3y= 3_1.': — 3xz 3z% — 3xy
1 1 1
6| x—v—z v—x-—=z Z—V—x
1.2 — vz _1',2 — ¥z Z: —xy
C1=>C1-C
C2=>C2—C3
4] 4]
=6 2x — 2y 2y — 2z
x% —yz—vy* +xz v —xz—z> +xy

and w=x3+y3+ 73 -3xyz

I—V—Xx

z°— Xy

=6[2(x-y) (y* + Xy —xz -2 )-2(y - 2)(X* + Xz — yz - Y°)]
=6[2(X-Y)(Yy-2)(x+Yy+2) - 2(y-2)(X - Y)(X + Yy + Z)]

=0

Ifx+y+z=u,y+z=uv,z=uvw then evaluate

Sol: x+y+z=u
y+z=uv
Z = uvw

y=uv—uvw =uv(l -

X=u-uv =u(l-v)

w)

X, X, X,
CRETERTLY] — - -
1—w —u ]
= |v(l—-w) u(l—-w) —uv
W uw uv
R2=>R;+R3
1—w —u ]
- v u 0
W uw uv
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= uv[ u-uv +uv]

=u’v
Ifu=x-—y?,v=2xy wherex=rcosf,y=r
u=x%—y?

=r2cos? & — risin? &

4.

Sol: Given

sinf S.T

— =4r° (07 S-2)

=14
ir.8)

V = 2Xy

=2rcos @ rsin

=r?(cos® & —sin? &) =rsin2 ¢
=r2cos2
Aluw) _ u, Ug N ‘ 2rcos28 r¥(—sin28)2 ‘
g | Y. Vg | - 2rsin2@ r? (cos28)2
cos2d —rsin2 &
= (@) sin2@ r (cos28)
= 4r? [rcos?28 + r sin®28 ]
=4r2(r)[ cos?28 + sin?24]
=43
Ifu=Z ,v=2 w= = find 222 (08S-4)
x & {xanz)
Sol: Givenu= = ,v=% w= =
5 - =
We have
U, U, U
ICTEERTE 'F e ’ 1
—— =| % Yy %
8 (2.2} ‘ W, W, W, ‘
by = wmi o s
o=l v, = aCly) = E v =
w, =1 , w, =1 ,w, =xy (-1/z2%) =22
—yz z ¥
.:l.': & &
8 . —E= *
3 (x3°2) | 42
¥ x —)
= = z°
—vz xz xy
=+ 1L 2 ‘ vz —xz XV ‘
el
vz xz —xv
-1 1 1
_ Cyadlezdizy) 1 —1 1
- VS ..
1 1 —-1
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= 1[-1(1-1) -1(-1-1) + (1+1) ]

=0-1(-2)+(2)
=2+2
=4
Assignment
dixyE) . - o
Calculate PR X = 5w Y= Jwu ,z=+yuw and u=rsinf cosd, v=rsinf sind w=r
cosg

6. Ifx=e"sech y= e tan 6P.T j“g : zg =1 (’08S-2)

Sol: Given x =e"sec? ,y = €' tan?

Az} _ X, Xg ird) _ ¥y T"
8 re) - | ¥ Vo ’ Blxa) 5‘__{ E_‘.'
x,=e'secld =x, 5= e'sech tanf

_1|-r:|. = er tanﬁI e y , -1.‘r9= el’ SeCZB

X2 —y? = e* (sec?d - tanf)
= 2r=log (x* - y?)
= r=%log (x*-y?)

RSV 1 (2x) = =

|:-{: -2

(-2y) = —=

|:-{: -2

(M2 —-w2 )

r, =%

1
(%2

=2
K&

_=secld _ 1/co=d _ 1

¥ tand sinf /cosd  =ind

| &

= Sinf == & =sin(Z)

H.'a.' = 11.: y(_ %) = ;: _.-:I-

rxa) _ |87 sect tand
ley) - ‘ A = e? sec? - y e' secftan 8
8 (r.8) e sec2f

= %" sec f[sec®f - tan®d | = e sech

=
______
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wied xax g° zec 8
Alxa) 2(rf —
Bird)  Bix
Two functions u and v are functionally dependent if their Jacobian
. U, 1,
JEzy=deas | Y =0

If the Jacobian of u, v is not equal to zero then those functions u, v are functionally independent.
To find the Maxima & Minima of f(x) we use the following procedure.
Q) Find f(x) and equate it to zero
(ii) solve the above equation we get Xo,X1 as roots.
(iiiy  Then find f(x).
If f1(X)x = x0) > 0, then f(x) is minimum at o

If fL(X)x=x0), < 0, f(X) is maximum at xo. Similarly we do this for other stationary points.

PROBLEMS:
1. Find the max & min of the function f(x) = x° -3x* +5 (08 S-1)
Sol : Given f(x) =x°*-3x*+5
f1(x) = 5x* — 12x3
for maxima or minima  f(x) =0
ox*—12x3= 0
X=0,x=12/5
f11(x) = 20 x® — 36 X
At x =0 =>fY(x) =0. So fis neither maximum nor minimum ats =0
At x=(12/5) f(x) =20 (12/5)3 — 36(12/5)
=144(48-36) /25 =1728/25>0
So f(x) is minimum at x = 12/5

The minimum value is f(12/5) = (12/5)° -3(12/5)* + 5
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. : inima for functi f iables:

Working procedure;
1. Find g and ? Equate each to zero. Solve these equations for x & y we get the pair of values

(al,b1) (az,bz) (a3 ,b3) ..................

H _82f 2 2

2 Find I= n= o* f n= o* f
OxX2 o X oy oy*

i) IFIn-m?>0and I<0at (ai,bz) then f(x ,y) is maximum at (az,b1) and maximum value is
f(az,b1) .

ii) IFIn-m?>0and I>0at (a1,by) then f(x ,y) is minimum at (az,b1) and minimum value is
f(as,b1) .

IF In—-m?< 0 and at (ai,b1) then f(x ,y) is neither maximum nor minimum at (az,b1). In this
case (a1,b1) is saddle point.

iv) IF In—m? =0 and at (a1,b1) , no conclusion can be drawn about maximum or minimum and

needs further investigation. Similarly we do this for other stationary points.
PROBLEMS:

1. Locate the stationary points & examine their nature of the following functions.
(07 S-2)
u =x*+y*-2x% +4xy -2y?, (x >0,y > 0)
Sol: Given u( x,y) = x* + y* -2x2 +4xy -2y?

For maxima & minima a_u= 0, 5_”= 0

OX oy
%:4x3-4x+4y20:>x3—x+y:0 """""""""" >(1)
%:4y3+4x-4y:03y3+x—y=0 """""""""""" >(2)
Adding (1) & (2),

xX+y*=0
SEXE Y e >(3)

(1) = xX*-2x = x=0,42,-,2
Hence (3) =y=0, -2, 2

2
1= 9T a4 m= 2 =2(2) =4 &n=2= =12y" 4
ox2 dxfy ©Px fy By 2

In—m? = (12x* - 4)(12y* - 4) -16

At(=v2, VZ),In-m?=(24-4)(24-4)-16 =(20) (20)-16 >0
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The function has minimum value at (— 2, +2)
At (0,0), In — m2 = (0— 4)(0-4) -16 =0
(0,0) is not a extrem value.

Investigate the maxima & minima if any of the function f(x) = x3y?(1-x-y).

(‘08 S—4)
Sol: Given () =532 (1-xy)  =x3% x4y — x3y°
? = 3x%y? — 4x%y? -3x%y° ? = 2%y — 2x%y -3x%y?
For maxima & minima j{ =0and ? =0
= 3x%y2 —4x3y? -3x3y® = 0 => x%y?(3 —4x -3y) = 0 ----m--mmeee- > (1)
D 2%y -2x%y -3y = 0 => x3Y(2 -2X-3y) =0 ---------eeeeee- > (2)
From (1) & (2) 4X+3y—3=0 ------mm-mmmeee- X2
2X+3y-2=0 ----mmmmmme- X3

2x=1 =>x=k¥
4(%)+3y—3=0 =>3y=3-2,y=(1/3)
| = az_f

(&

= 6Xy2-12x%y? -6xy°

X2
)(1,2 1 = 6(1/2)(1/3)%-12 (1/2)2(1/3)? -6(1/2)(1/3)® = 1/3 — 1/3 -1/9 = -1/9

\ ox
o* f
= =2 (22 ) =6x%y -8 X3y — 9
m Xy ( -) X2y -8 X3y — 9x%y?

1 ) w2 = 6(112)(L/3) -8 (1/2)%(L/3) -9(L/2)2(L/3)° = 252 =2
010y ) =
n= z = 2x3 -2x* -6x°y
ot 1 aras) = 2(1/2)%-2(1/2)* -6(1/2)3(1/3) = L
Loy* ) PR
In- m? =(-1/9)(-1/8) ~(-1/12)* =— - — === =— >0

The function has a maximum value at (1/2 , 1/3)

3. Find three positive numbers whose sum is 100 and whose product is maximum.
(’08 S-1)
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Sol: Let x ,y,z be three +ve numbers.
Given x +y +z =100
= Z=100-x-Yy
Let f (X,y) = xyz =xy(100 — x — y) =100Xy —x2y-Xy>

For maxima or minima ? =0 and ? =0

=

=100y —2xy-y* =0 =>y(100- 2X —y) =0 =------------m--- > (1)

E
dx
? = 100X —X? -2xy = 0 =>X(100 —X -2y) =0 =--------mmmmmmmm- >(2)
From (1) & (2)
100 -2x -y =0
200 -2x -4y =0

-100+3y =0 =>3y=100 =>y=100/3
100 - x —(200/3)=0  => x=100/3

0% f
| = =-2
ox? 4
0 f
> | (100/3, 100/3) = - 200/3
OX
aZf _ @ pou N _
m= axay _E;)_ 100'2X'2y
(21 Y (100/3 , 100/3 ) = 100 (200/3) (200/3) = ~(100/3)
L oxey )
0° f
n= a—yz =-2X

0% f )
> | (100/3,100/3) = - 200/3
oy )

In -m? = (-200/3) (-200/3) - (-100/3)?> =(100)?/3
The function has a maximum value at (100/3, 100/3)

100 _100 _100
3 3 3

The required no. are x = 100/3, y = 100/3, z =100/3
4. Find the maxima & minima of the function f(x) = 2(x*> -y?) —x* +y* (°08 S-3)
Sol: Given f(x) = 2(x2 —y?) —x* +y* =2x2 -2y? x* +y*

i.e. at x = 100/3, y = 100/3 -z =100-

. . . Erl;’ L:r.f
For maxima & minima P 0 and oo =

L =4x-43=0 =>4x(1-x) =0 =>x=0 ,x=%1
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L=dy+d4y’=0 =>-4y(1-y})=0 =>y=0,y=+1

| =221 =4-12x
dx2
m= 82f :2(@\:0

n= j_ = -4 +12y?

we have In —m? = (4-12x?)(-4 +12y?) -0
= -16 +48x? +48y? -144x%y?
= 48x? +48y? -144x%y? -16
i) At(0,+1)
In-m?=0+48-0-16=32>0
1=4-0=4>0
f has minimum value at (0, +1)
f(x.y)=20¢-y) x* +y*
f(0,+£1)=0-2-0+1=-1
The minimum value is ‘-1 °.
i) At(+1,0)
In-m?=48+0-0-16=32>0
=4-12=-8<0
f has maximum value at (+1,0)
f(x.y)=2(x*y’) x* +y*
f(£1,0)=2-0-1+0=1
The maximum value is ‘1 °.
ii) At (0,0),(=1,+1)
In-m?<0
| =4-12x
(0,0) & (£1,+1) are saddle points.

F has no max & min values at (0,0), (=1, +1).

Assignment
1. Find the maximum value of x,y,zwhenx +y+z=a.

M gL P (g M+ +E]

[/\nS:“; - | L+ L+ ]

(ot
Lt ntp]
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*Extremum : A function which have a maximum or minimum or both is called
‘extremum’
*Extreme valuye :- The maximum value or minimum value or both of a function is

Extreme value.

*Stationary points: - To get stationary points we solve the equations j— =0and

25 =0i.ethe pairs (at, by), (a2, b2) ...........o. Are called
Ay
Stationary.

F(x,y,z)=f(x,y,z) +v @(x,y,z) wherey is called Lagrange’s constant.

LY § BEZ IR V- ) P— (3)
ox = x
%:=0 :>% +}'§:0 --------------- (4)
F 20 =587 4y 20 (5)
oz )=y )=y

2. Solving the equations (2) (3) (4) & (5) we get the stationary point (X, Y, z).
3. Substitute the value of x , y, z in equation (1) we get the extremum.
Problem:
1. Find the minimum value of x? +y? +z? given x +y + z =3a (°08 S-2)
Sol: u=x? +y? +2?
f=Xx+y+z-3a=0
Using Lagrange’s function
FX,y,2)=u(x,y,2) +y B(x,y,2)
For maxima or minima

e TS | J— )
OX dx dx

OF _éu . 80 _ v
8_y _E-h{ '5':-'_2y+’ =0 (2)
oF _é&= +};E:22+}':0 ............ (3)
oz 2= =)

From (1), (2) & (3)
¥y =-2X=-2y=-22
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r=v ==z
@=x+x+x-3a=0
x=a

x=y=z=a

Minimum value of u = a? + a® + a®> =3 a2

Fill in the blanks-

) & (w1
1. ifu=x+yand v=xy then ——— =
d(x)
) . & (x)
2.ifx=g"cosv, y= g¥sinvthen ——— =
GICTREN

2 (2)-

4, ifu= f (E) then [ (%) =

e P
& (w1 & (x)

S - o
d (%) GICTREN

6. Two functions u and v are said to be functionally dependent if

X X+ W,
7. Ifu=—and v=— thenJF (—) =
7 v

! X—V XV

ox x & (w1 _
8. If u=&" siny,v=" cosy then =

o
o1 (57 (2)-

10. If x=rcosf,y=rsinf then | (i)

.

& (w1
11. If u=3x+5y and v=4x-3y then P =
(%)

w7

'L_.'
13. If u=— and v=xy then f (—)=
X

XV
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OBJECTIVE TYPE QUESTIONS

14. Ifu=x~ - 2y ,v=x+y then jlrt: =
(a) (x + 1)2 (b) 2(x+1) (c) 3(x+1) (d) None
16. If u(1-v)=x, uv=y then | (E) . f(i) =
(a) 0 (b) 1 (c) xy (d) None

Ty TRE .
17 fu——2" v=tan ™! x+ tan~ 1V then ] (_) ] (Q) i
’ XV

1—xv u,w
(a)0 (b) 1 (c) xy (d) None
— TRE
18. Areu=xy 1 — X*, v=2x functionally dependent? If so what is (—) ?
X,V
(a) yes,1 (b) yes,0 (c) No,0 (d) None
- a & (w1
19. If u=X“y,v=XV* then———is
- (%)
(a)5x %y ? (b)a X7 v° (c) 2x7y? (d)3x?y?

o

(Assignment Questions)

{ Functions of Several Variables}

& {x.y.2)

1 Ifx+y’=u , y+z%=v z+x*=w find ———
& {x.y.2)
Aluwrw)

2. If x+y+z=u, y+z=uv, z=uvw then evaluate

3. S.T the functions u=x+y+z, v=x2+y?+z2-2xy-2zx and w=x3+y*+z3-3xyz are functionally
related.
4. Find the max & min values of the function f(x)=x>—3x*+5.

Find three positive numbers whose sum is 100 and whose product is maximum.
Locate the stationary points & examine their nature of the following functions  u=x*+y*-
2X2+4xy-2y? (x>0,y>0).

& (urw)

dixy.2)

7. 1f u=22 v== w=2 find
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