
INTEGRAL TRANSFORMS AND VECTOR CALCULUS

Unit – 3
FOURIER SERIES

Objectives:

To introduce
 fourier series representation of a given function with period 2 (or) 2𝑙

 half range series representation of a given function with period  (or) 𝑙 .

Syllabus:

Determination of Fourier coefficients (without proof) – Fourier series – even and odd

functions – Fourier series in an arbitrary interval–Half-range sine and cosine series.

Outcomes:

Students will be able to

 expand the given function as Fourier series in the interval [c ,  c+ 2 ]

 expand the given function as Fourier series in the interval [c ,  c+ 2l ]

 expand the given function as Half-range Sine [or] Cosine series in the 
interval [0,𝑙].

 write the expansions of  2
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Learning Material
Introduction :

It became important to study the possibility of representation of the given
function by infinite series other than power series. Since many phenomena like
vibration of string, the voltages and currents in electrical networks, electro-
magnetic signals, and movement of pendulum are periodic in nature .

There is a possibility of representing a periodic function as an infinite series
involving sinusoidal (sin x & cos x) functions. The French physicist J . B . Fourier
announced in his work on heat conduction that an arbitrary periodic function could
be expanded in a series of sinusoidal functions.

Thus, the aim of the theory of Fourier series is to determine the conditions
under which the periodic functions can be represented as linear combinations of sine

and cosine functions .

Fourier methods give us a set of powerful tools for representing any periodic
function as a s um of sines and cosines.
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Existence of Fourier series:

 Dirichlet’s Conditions :

If a function f(x) is defined in 𝑙 ≤ x ≤ 𝑙 + 2 ,  it can be expanded as a Fourier 

series provided the following Dirichlet’s conditions are satisfied

1. f(x) is singe valued and finite in the interval (c , c + 2 )

2. f(x) is piece-wise continuous with finite number of discontinuities in 

(c ,c  + 2  ).

3. f(x) has finite number of maxima or minima in (c ,c  + 2  ).

Note:

 These conditions are not necessary but only sufficient for the existence of Fourier series.

 If f(x) satisfies Dirichlet’s conditions and f(x) is defined in (c, c + 2 ), then f(x) need not be 

periodic for the existence of Fourier series of period 2 .
 If x = a is a point of discontinuity of f(x), then the value of the Fourier series at x = a is

1 f (a)  f (a)
.

B a sic Formulae to Solve Integration :

 Bracketing Method –
[Through Examples]

 


 
 

 


 


22
 2

n3

Cos nx 

n2

 Sin nx 
 2x 

n

 Cos nx 
x .Sin nx dx x  

 


 





 
 n2n

1  Cos nx  Sin nx 
x.Cos nx dx  x

  



  
 
















2 3

Cos 

L   L 

 Cos 

 L 

 Sin

L
x2.Cos dx x2 L   2x L   2 L 

n3 3

nx 

n2 2

nx 

n

 nx 
nx

 Spl . Formulae to Remember –


eax

a.Sin bxb.Cosbx
a2  b2 eax.Sin bx dx 

eax

a.Cosbx b.Sinbx eax.Cosbxdx 
a2  b2

  
a

a

a

0
f (x) dx 2 f (x) dx [ Here f(x) m ust be a n Even function ]

 
a

a
f (x) dx0 [ Here f(x) m ust be a n odd function ]

 Values to Rem em ber : S in n = 0 & C os n = 1n

F ULL RANG E F OURIE R S ERIE S [Interval of length 2  ]

The Fourier series for the function f x in the interval [ c , c + 2 ] is given by

   0

2
n n

a 

n 1

f  x   a cos nx  b sin nx

Continuous Derivatives Continuous Integration



C = 0  [0, 2 ]

Where a0 =
 

2

0

1
f (x) dx , an =

 
2

0

1
nf (x).Cosnx dx &  b  = 

2

0

1



C =   [- , ]

f (x).SinRemnexmdbexr this formula as

this carries 6M Problem.

Where  a0 = 




1


f (x) dx ,  an = 





1


nf (x).Cosnxdx &  b  = 





1


f (x).Sinnx dx


21

 0
f (x) dx , an = 

21

 0
nf (x).Cosnx dx &  b  = 

21

 0
f (x).Sin nx dxWhere  a0 =

Step One : -

 
1 c2

Where  a0   c f x dx  
1


n

, a 
c

c2

 f xsin nx.dx
1


n

f  x cos nx.dx & b 
c

c2



   0

2
n n

a 

n 1

f x   a cos nx  b sin nx

   0

2
n

a 

n 1

f  x   a cos nx  b sin nx n

   0

2
n n

a

Examples :

1. Find the Fourier series to represent f(x) = x2 in the interval (0,2 ) 

Sol. As the given interval is (0, 2  ), Fourier series becomes -



n 1

f  x   a cos nx  b sin nx

Remember these 

formulae as this

carries 6M Problem.

Step Two : -

=
0

2








  2
 


 n3n2

 cos nx   Sin nx 
2

  2x
n

 Sin nx x 

Step Three : -

=   
2

2





0

  2  
 


n3n2  2x 

n

 Cos nx   Sinnx  Cos nx 
x 



Finally,

2. Express the function f(x) = 


x 0 x

  x  2
as Fourier Series .

Where a0 = 
21

 0
f (x) dx , an =


21

 0
nf (x).Cosnxdx &  b  = 

21

 0
f (x).Sin nx dx

Hence the Fourier series becomes ,

   0

2
n n

a

Sol. As the given interval is (0, 2 ), Fourier series becomes -



n 1

f  x   a cos nx  b sin nx



3. Express f x x as Fourier series in the interval   x  

Sol Let the function x  be represented by the Fourier series

Then

Sep – 1 Step - 2

Sep – 3

 0

2

a
x   



n 1

a cos nx  n



n 1

b sin nx  1 n

0

1

1



 
0 

 

 



a 
1

 x is odd function

 

  
 



f xdx 
1 x  dx

 

 

xdx dx
 

 0.2 dx
 


1 2 x  
  0  

 2 0 2 and

1











 

n
a 

1 
f xcos nx.dx









x 





x  cos nx.dx



1



xcos nx.dx cos nx.dx

1 

0
 cos nx.dx 0  2

 




( x cos nx is odd function and

cos nx is even function)

 2  
 0

 an  20
cos nx.dx

n

n


2
0  0  0 for n  1, 2,3......

n



 sin nx 



2
sin n  sin 0



 
0

1

1


1







 






 



n
b f   x  s in n x .d x



n



 



 

 

 



x   s in n x .d x



1



x s in n x   s in n x .d x
   

 2 x s in n x .d x   0
 


2 

x   c o s n x   1 
 s in n x  

     n 2  
      0

 
  n




2    c o s n

 0   0  0 
  

n


2

cos n 
2 1n

 n


2 1n1

n  1,2,3.....



Substituting the values of a0 , an ,bn in (1),

We get ,

4. Find the Fourier Series of the periodic function defined as f (x) 


   x  0

x 0  x 

Hence deduce that

S ol. Then

Step 1 : Step 2 :

Step 3 :

2 3 4

n1

   2

sin x 

1
sin 2x 

1
sin 3x 

1
sin 4x  ......


 



x    1n1 2
sin nx

1 1 1

12 32 52

 2

8
        

 Let f  x   0

2

a 

n 1

a cos nx  n



n 1

b sin nx  1 n

2 3 452   
  

Substituting the values of a0 , an and bn in (1), we get

f x 



2 cos x 

cos 3x


cos 5x
     3sin x 

sin 2x


3sin 3x


sin 4x
  

4   32



0

0

0

2 2
2

1

1

2





1 


 2 






   



 
o



a 
1

f xdx








0  x2  





 dx xdx
 

  x  
 

  1  



2
   
  2    


0

1 



 
  0 



 

n

o 



a 
1

1   sin nx 
0


  x

n n2 



f xcosnx.dx




sin nx cos nx 
 

n 



 cos nx.dx xcos nx.dx
 



 


1 

0
1

cos n 
1 

  n2 n2 

 
0

0

1 



1 
 

  0 



 

n
b 

1

 cos nx 
0


 x

n

cos nx  

n n2    



f xsin nx.dx




sin nx 
 

 



 sin nx.dx xsin nx.dx
  



 


1  1 cos n 


cos n 

 n n 

n


1
1 2cos n 

1 2 3 4
2 4 ..........

b  3,b 
1

,b 1,b 
1



Even and Odd Functions:-

A function f x is said to be even if f x f x and odd if f x  f x

Example :- x2 , x4  x2 1,ex  e x are even functions   & x3 , x, sin x, cos ecx are odd functions.

Note 1 :-

1.

2.

Product of two even (or) two odd functions will be an even function 

Product of an even function and an odd function will be an odd function

Note 2:-

Fourier series for even and odd functions

We know that a function f x defined in ,  can be represented by the Fourier series

,

a

a    f   x dx  0 when  f x is an odd function

0

a

 2 f x dx When   f x is even function

2
n n

 

n 1 n 1

f x 
a0  a cos nx  b sin nx

f xdx
0

Where a


 


1
 f xcos nx.dx

n
a



 


1


f xsin nx.dx
n



 
And b 

1


Case 1 :- when  f x is even function

Since cos nx is an even function,

0
0

a


 


1

f xdx 
2 

f xdx 

 f xcosnx is also an even function.

a 
1



f xcos nx.dx

Case 2:- when

function

function,  

and

f x is an odd function

since f x is an odd

0
a



 


1

f xdx  0

 Since cos nx is an even

f xcosnx is an odd function



Examples:-

1. Expand the function f x x2 as a Fourier series in , , hence deduce that

 f(x) is an even function.Sol. Since  f x x2
 x2  f x

Step 1 :

Step 2 :


4 cos n


4 1n

n2 n2

Substituting the values of a0  and an , we get

12 22 32 42

1


1


1


1     
 2

12

2 0

2

a

Hence in its Fourier series expansion, the sine terms are absent


n 1

 x   a cos nx n

0
x2dx

2


a0 

3






2  x3 


2 2

  3 
 0



0

2

0

2

x cos nx.dx


2 

0  2
cos nx

 2.0


  n2

n



f xcos nx.dx


2



a 
2

n n2




2   sin nx    cos nx    sin nx 

 x  2x  2



      n3 
     0







 bn  0

No need  

to find



Deductions:- Putting x  0 in (4), we get

F UL L RAN GE FOURIER S E R I E S [Interval of length 2𝒍]

The Fourier series for the function f x in the interval [c, c + 2𝒍] is given by







0

2 n1
n n

ll

a
f (x)   a Cos  b Sin

nx nx

l c
Where a 

c 2l

0

1
f (x) dx ,

n
ll c

a  
1 c2l

f (x)Cos
nx

dx cn
l l

b 
1 c2l  

f (x) Sin
nx

dx

C = 0  [0, 2𝒍]







0

2 n1
n n

l

x 
 b Sin

l

a
f (x)   a Cos

nnx

Where l

2l

0
0

a  f (x)dx
1

n
ll 0

,  a 
1 2l

f (x)Cos
nx

dx n
ll 0

& b 
1 2l nx

f (x) Sin dx

C = −𝑙  [−𝒍, 𝒍]








0

2 n1
n n

l

x 

l

a
f (x)   a Cos  b Sin

nnx

Where 
l

ll
a  f (x) dx

1
0 n

ll l
,  a 

1 l
f (x)Cos

nx
dx 

l

l
n

f (x) Sin
nx

dx
ll

& b 
1

Examples:-

1. Express  f x x2 as a Fourier series in l,l

f x f x2 
 x2  f x

Therefore  f x is an even function

Hence the Fourier series of f x in l,l is given by

Sol

 2

2

42

4

cos nx
n2

 2

 2

n1

x   
3

 1n1

  4
3

cos 4x

3 22 32

cos 2x cos3x

n
1 cos nx

n



n1

 
 


 2

 
4cos x   
 



2 2 2

1 1 1

2 3 4

 2

1 1 1

22 32 42

 2

12

0   4 1  
3


    

 

 1       

Remember this formula as 

this carries 6M Problem.

Remember this formula as 

this carries 6M Problem.

SEE FOR EVEN OR

ODD FUNCTION AS  

THE INTERVAL IS 

FROM – VALUE

TO + VALUE



Since the first and last terms vanish at both upper and lower limits

Substituting these values in (1), we get

2. Find a Fourier series with period 3 to represent f x x x2 in 0,3

Sol. Let

Here 2l  3, l  3 / 2 . Hence (1) becomes

0

0

2

n

a n x

l

where a
l

f xcos
n x

dx
l



n1

f x   a cos


2

l

 n



2 3

2 l l

l

n2 2

l  
n3 3


l

  n x 
sin  

 cos
n x  

sin
nx 

        

n
 x2     2x   2 

l       
      l    l 0

2  cos n 
an  l 

2l
n2 2 / l 2 


4l 2 cos n

n2 2


1n 

4l 2

n2 2

     

2

2 2

2

cos
3

cos

cos 2 cos 3

12 22 32

l 2

l 2

n2

l 4l

3 

l

n x

n2 2

3 

 x / l  x / l

n1

n1

 1n
4l2

l

4l 2  1n1
n x

 

cos  x / l 
         



x2  





 
2 l l

 a0 n x n x 
 bn sin   1

n1  
f  x    an cos

f x x  x2

 0
2n x

 2
2 3 3

 
 n

n1 



x 2n
n

 b sin
a

  a cos

 

0
0

3
22

3 0
   9 

3  2 3 0





Where  a 
1 2l

f xdx
l

2  x2 x3 
3

x x dx 

2  l 2  x3 
l

hence a0  l 0 
x dx 

l   
2

 3 0

2l

3

l

22 ll

fx2cxoscos dxdx
ll l

nnx x
also a 

n 00

cos


2 







0

l
 2x 

l

n x 
l

n2 2

l 2

Using bracketing method, we obtain

 

 

2

0

3
2

0 3

 
 


2

3
 
 





n
and a 

1
f   x cos dx

l l

x  x cos dx

 nx 

 2nx 



Substituting the values of a’s and b’s in (2) we get

Note:-

1) Suppose f x  x in 0,  , it can have Fourier cosine series expansion as well as Fourier 

sine series expansion in 0,

2) If f x x2 in 0,, can have Fourier cosine series as well as sine series

Examples:-

1. Find the half range sine series for f x x  x in 0 x  . Deduce that

13 33 53 73 32

1


1


1


1
    

 3

The sine series



n1

n
l

f (x) b .Sin
nx

Where

n
l l0

b 
2 l

f (x).Sin
nx

The Cosine series



2 n1

n
l

f (x) 
a0 a .Cos

nx

Where

l 0
0

a 
2 l

f (x) dx

n
l l0

a 
2 l

f (x).Cos
nx

Half –Range Fourier Series (Interval of length 𝒍) [0,𝒍]

Remember these 
formulae as this carries 

6M Problem.

Part – B [3Q – (b)]

Half range
Ans. The Fourier sine series expansion of f x in 0, is

(0,𝑙) means (0,

)

0
n

l l
b 

1 2l
f xsin

n x
dx  

3
2

0 3
dx

 2n x 
2

3
x  x sin  

 


2 9 9 1
cos sin

2 3 3

 

  
   

 2n x 
  
n1 n1

x  x  
 2n x  12 1

 2 n2  n



Hence

Deduction:-

Hence

2. Find the half- range sine series of f x1 in 0,l

0

0



f x x  xbn sin nx
n1





n
where b 

2


f xsin nx.dx

n
hence b 

2




 2




x  xsin nx.dx 
2

 x  x sin nx.dx
 0

n

 0, when n is even

b   8
, when n is oddn3

8
sin nx or

x  x
8 

sin x 
sin3x


sin 5x

    

 1

n1,3,5...n3
x   x

  33 53 
 



2
Putting x 


in (1), we get

53

3 3

2

 
x 

 


8 
sin




1
sin

3


1 
sin

5
  



2  2    2 33 2

1

2 5 2 7 24  3


   

      1    2 


8  1

1 sin    sin 2   sin 3          3 
      

13 33 53 73

1


1


1


1     
 3

32

n
ln1

Ans. The Fourier sine series of f x in 0,l is given by f x  1  b sin
n x



0

0





n

l

here b 
2

l l

 1.sin dx
l l

f xsin
n x

dx
l

2 n x




2   cos







0

l
l


n x 
l

n / l

     2

n 3


2  2 1 cos n 
 n3

n

cos nx 2    cos nx    sin nx 
  x  x    2x  2



   n2   n3 
    0




4 1 1n



, when n is odd

Hence the required Fourier series is  f x .

in the range 0  x  l


0

2 n1

 n

nx 

l

a
Sol. Half Range Cosine series in (0,𝑙) is given by f (x)   a .Cos

When n is odd

2 cosn 1

0

2 







2 1n1
1

n 

bn  0 when n is even

l

n x 
l

 cos
n 

n

4

n


l

4 n x

n
sin




n1,3,5

 
l

  x 3. Find the half – range cosine series expansion of f  x  sin  
 


2 cos 1 4

and  
l 

   

0
0 0

0

0

0

0

sin

1



2 cos x / l 
l

 
l   / l


   

 
 


 

 where a 
2

f xdx 
2

l







n

l

l l l

l  x
sin dx

a
l

cos dx l  
l

l sin n sin n
dx


2

l


2

l


1

l l l

f xcos
n x

dx
l

 x   n x 

1  x 1  x 


l




l 


0


cosn1 x / l 

n1 / l



 cosn1x 

l

n1 / l

1 11  1n1 1n1 
 




n1 n1  


n1 n1


 



When n is even

=======*========**=======*========**=======*========**=======*========

1
n

a 
1  1 1 1

  

 0

  n 1 n 1 n 1 n 1

4

 n1n1

1 1 1 1 

1.3 3.5

 



   

sin
 x 


2


4 cos2x / l


cos4 x / l
   



n
a 

1 


 n1 n1 n1 n1


 l    



Assignment-Cum-Tutorial Questions

SECTION-A

Objective Questions

Then f x is function [ ]

2.

a) Odd b) even c) periodic d) none

If the Fourier series for the function f x defined in ,  then an =

3. The Fourier constant bn for f x xsin x in , is 

4. If 𝑓(𝑥) = 𝑥2 in (−𝑙, 𝑙) then 𝑎0 & 𝑏1 are ___  _ _ _ _ _ _

5.  If 𝑓(𝑥) = |𝑥| in (−𝜋, 𝜋) then 𝑎1 & 𝑏1 𝑎𝑟𝑒

6. In Fourier expansion of f x x x2 in ,  the value of a is
n

[  ]

a) b) c) 0 d) none

7. If  f x xcos x in , then an is

a) 1 b) 2 c) 3 d) 0

8. If f x is expanded as a Fourier series in 0,2 then a0 

[ ]

[ ]

b) d) none

c) d) none

a) 0 b) 1 c) 2 d) none

 1. If f  x 

1
2x

  x  0
 

2x


0  x  


1


n2 n2

2 14 4 1n

f xdx
1 2

a) 
 0  

0
f  x dx




1 2


f xdx

2

c)  
 0

9.   Fourier sine series for 𝑓(𝑥) = 𝑥 in (0,𝜋) is

10. If 𝑓(𝑥) = 𝑠𝑖𝑛 𝑥 in –𝜋 < 𝑥 < 𝜋 then 𝑎0 =

11.In Fourier series expansion of 𝑓(𝑥) = 𝑐𝑜𝑠ℎ𝑥 in (−4,4) the Fourier co efficient a1 is

12.If f x is expanded as a Fourier series in 0,2 then bn 

[ ]

f xcos nx.dx
2

a) 
 0
1 1

f xsin nx.dx
2

b) 
 0

 
0

2
f  x sin nx.dx

2

 

13. 10. If f x1sin x in (1,1) is expressed as a Fourier series then the Value of bn

= [ ]



SECTION-B

II) Level Two Questions:

1. Obtain Fourier Series for the function 𝑓(𝑥) = {
𝑥, 𝑖𝑓 0 < 𝑥 < 𝜋

2𝜋 − 𝑥, 𝑖𝑓 𝜋 < 𝑥 < 2𝜋

1 1 1

8 12 32 52
And hence deduce that     ...

 2

2. Obtain the Fourier series to represent x – x2 in ( -π, π) and deduce that

 ...
12 22 32

 2


1


1


1

12

2

12 22 32
 ...

 2  


1


1


1
3. If f(x) = x , - 𝑙 < x <𝑙. Obtian Fourier Series and deduce that

12

4. Expand f(x) = e-x as a Fourier series in(−1,1).

5. Obtain Fourier series to represent the function f(x) = |x| in ( -𝜋,π)and deduce that

 ...
12 32 52

 2


1


1


1

8

6. Obtain the Fourier series expansion of f(x) given that f(x) = (  x )2 𝑖𝑛 0 < 𝑥 < 2𝜋 and 

deduce that 1/12 + 1/22 + 1/32 + … … … … = 𝜋2/6

7. Find a Fourier series to represent the function 𝑓(𝑥) = 𝑒𝑥 for –𝜋 < 𝑥 < 𝜋 and hence derive a 

series for 𝜋/𝑠𝑖𝑛ℎ𝜋

8. Find the Fourier series of the periodic function 𝑓(𝑥) = {
−𝜋 , −𝜋 < 𝑥 < 𝜋
𝑥 , 0 < 𝑥 < 𝜋

1 1 1 𝜋2
Hence deduce that + + + ⋯ … … … . =

12 32 52 8

9. Find the half-range cosine series and sine series for 𝑓(𝑥) = 𝑥 in 0 < 𝑥 < 𝜋 hence deduce that

12 32 52 72

2
1   + 1 + 1 + 1 + ⋯ … … … = 𝜋

8

10. Find the Fourier series expansion for 𝑓(𝑥) = { 2, −2 < 𝑥 < 0
𝑥, 0 < 𝑥 < 2

11. Find the Fourier series expansion for the function 𝑓(𝑥) = 𝑥 − 𝑥 2 𝑖𝑛 (−1,1)

12. Show that the Fourier series expansion of f(x) = 1 in 0<x<1 and f(x) = 2 in 1<x<3 with f(x+3) =

f(x) is (DEC 2015)

13. Find the half-range cosine series for the function f(x)={
𝑘𝑥 ,0 ≤ 𝑥 ≤ 𝑙

2

) 𝑙

2
𝑘(𝑙 − 𝑥 ,  ≤ 𝑥 ≤ 𝑙

14. Express f(x) = x as a half range sine series in 0 < x < 2.

15. Find the half-range cosine series for the function 𝑓(𝑥) = (𝑥 − 1)2 in the interval 0 < 𝑥 < 1

Hence show that ∑∞ 1 = 𝜋2

𝑛=1 (2𝑥−1)2 8



SECTION-C

C. Questions testing the analyzing / evaluating ability of students

Level Three Questions:


0

1. An alternating current after passing through a rectifier has form i 
l.sin 0  

   2
.

Find the Fourier series of the function.

2. Find the half period series for f(x) given in the range (0,L) by the graph OPQ as shown in the following 
fig.

.

Gate Previous year Questions :
2016

2015



2012

2011

2010

2009

2008

2007

*********************************************************************************************



UNIT - 1
MATRICES



 Rank of a matrix: Let A is be an matrix .If A is null matrix , we define its rank to be 0 (zero).

 If A is non zero matrix ,we say that ‘r’ is the rank of A if

 (i) every (r+1)th order minor of A is 0(zero) and

 (ii) there exists at least one rth order minor of A which is not zero

 Rank of A is denoted by ρ(A)

 Note:

 1) Every matrix will have rank

 2) Rank of a matrix is unique

 3) ρ (A) 1 when A is a non-zero matrix

 4)If A is a matrix of order rank of A= ρ (A) min(m,n)

 5)If ρ (A) = r then every minor of A of order r+1 or more is zero

 6)Rank of the identity matrix In is n

 7)If A is a matrix of order ‘n’ and A is non-singular (i.e; det A 0) then ρ (A)=n.

 8)The rank of the transpose of a matrix is the some as that of the original matrix(i.e; ρ (A)= ρ (AT))

 9) If A and B are two equivalent matrices then rank A= rank B

 10)if A and B are two equivalent matrixes then rank A = rank B.





















































39

UNIT - II
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Eigen Values and Eigen Vectors

Eigen Values:-

Let A = [aij]nxn be a square matrix of order n & is the scalar quantity, is called the

1)

2)

3)

The Matrix A - I is called the characteristic Matrix is A where I is the unit matrix of order n. 

The polynomial |A - I| in  of degree n is called characteristic polynomial of A.

The equation |A - I| = 0

i.e., [

a11 − 
𝑎21

𝑎12

𝑎22 − 
.

𝑎𝑛2

. 𝑎1𝑛

. 𝑎2𝑛

. .

. 𝑎𝑛𝑛− 

.
𝑎𝑛1

]  = 0 is called characteristic equation of A

Note:- The characteristic equation is of the form (-1)nn + C1
n-1+c2

n-2+….+cn=0

4) The roots of the characteristic equation |A - I| = 0 are called characteristic roots (or) latent roots 

(or) Eigen values of the Matrix A.

Note: 1.

2.

The set of all eigen values of A is called the Spectrum of A.

The degree of the characteristic polynomial is equal to the order of the matrix.

Eigen Vectors:-

Let A = [aij]nxn, A non – zero vector x is said to be a characteristic vector of A if  a scalar  such that 

AX = X.

If AX = X, (x ≠ 0) we say that x is Eigen vector or characteristic vector of A corresponding to the 

Eigen value or characteristic value  of A.

Solved Problems:

4

1 2
1) Find the Eigen values of A = [5 ]

4

1 2

Sol:- Step 1:- Given Matrix A =
5 ]
[

Step 2:- Characteristic equation |A - I| = 0

= [5 −  4

1 2 − 
] = 0

(5-) (2-) – 4 = 0 

10-5-2+2-4=0

2-7+6=0

Step 3:- The roots of characteristic equation is called eigen values or eigen roots or latent values.

2-7+6=0

2-6-+6=0

(-6) -1(-6) = 0

(-6) (-1) = 0

 = 1, 6



 Eigen values are 1,6

0 1 2

2) Find the characteristic roots or eigen roots of A = [1

2

0

−1

−1]
0

Sol:-

0 1 2

Step1: Given matrix A = [1 0 −1]
2 −1 0

Step 2: Characteristic Equation

|A-I| =0

0 −  1 2

[ 1 0 −  −1 ] = 0

2 −1 0 − 

 - 3+6-4 = 0

3-6+4 = 0

Step 3: roots of above egn are called eigen values.

3-6-4 = 0

(-2) (2+2-2) = 0

 = 2,  =
−2±√4+8

2

 = 2, -1±√3

Eigen roots are 2, -1±√3

Exercise problems:-
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2 2 1

1) Find the eigen values A = [1 3 1]
1 2 2

1 2 3

2) Find the eigen values A = [0 2 3]
0 0 2

−2

3) Find the eigen values A = [ 2

2 −3

1 −6]
−1 −2 0

4) Find the eigen values A = [1
2

3 4
]

Eigen vector problems

5 −2 0

1) Find the Eigen values and Eigen vectors of the following matrix A = [−2 6 2]
0 2 7

5 −2 0

Sol: Step1:- given matrix A = [−2 6 2]
0 2 7

Step2:- Characteristic equation |A-I| = 0

5 −  −2 0

[ −2 6 −  2

0 2 7 − 

] = 0



(5-) {(6-x) (7-)-4} +2{-2(7-) -0} +0 = 0

-3+182-99+162=0

3-182+99-162=0

Step3:-(-3) (-6) (-9) = 0

=3, 6,9

Eigen values are 3,6,9

Step3: Eigen vectors

1) Eigen vector corresponding to = 3 [A-I]x = 0; [A-3I]x = 0

05 − 3 −2 0 𝑥1
[ −2 6 − 3 2 ] [𝑥2] = [0]

0 2 7 − 3 𝑥3 0

2

[−2

0

−2 0 𝑥1 0

3 2] [𝑥2] = [0]
2 4 𝑥3 0

Using Echelon form

2

R2R2+R1[0
0

2

R3R3+2R1[0
0

−2 0 𝑥1 0

1 2] [𝑥2] = [0]
2 4 𝑥3 0

−2 0 𝑥1 0

1 2] [𝑥2] = [0]
0 0 𝑥3 0

Rank = 2 = no. of non zero rows

N = no. of unknowns (or) no. of variables n = 3

r<n  n-r = 3-2 = 1 we choose one variable to the one constant. 

2x1-2x2 = 0

x1+2x3 = 0

let x3 = k

2x1 = 2x2 = 2[-2k] = -4k

2
x1 =

−4 k = - 2k
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𝑥1

Eigen vector x1 = [𝑥2]
𝑥3

−2𝑘 2

𝑘 0

= [−2𝑘] = k [−2]

Eigenvector corresponding to 6 :- [A-6I]x = 0 

Using Echelon form

−1 −2 0 𝑥1 0

R2R2-2R1[ 0 4 2] [𝑥2] = [0]
0 2 1 𝑥3 0

−1 −2 0 𝑥1 0

R32R3-R2[ 0 4 2] [𝑥2] = [0]
0 0 0 𝑥3 0



r = 2 , n = 3

we choose one variable to the one constant. 

i.e., x3=k

-x1-2x2 = 0

4x2+2x3 = 0

x3 = k

4x2= -2x3 = -2k

2
X2 = -

1
= k

2
-x1-2x2 = 0  -x1 = 2x2 = 2[

−1] k

x1 = k, x2 =
−1

k, x3 = k,

𝑘
= [−1/2𝑘]

𝑘

2

2

𝑥1

Eigen vector x2 = [𝑥2]
𝑥3

2

2

x2 =
𝑘 [−1]

Eigenvector corresponding to 9 :- [A-9I]x = 0

−4 −2

−4 −2 0 𝑥1 0

[−2 −3 2 ] [𝑥2] = [0]
0 2 −2 𝑥3 0

0 𝑥1 0

R22R2-R1[ 0 −4 4 ] [𝑥2] = [0]
0 2 −2 𝑥3 0

−4 −2 0 𝑥1 0

R32R3-R2[ 0 −4 4] [𝑥2] = [0]
0 0 0 𝑥3 0

r=2, n = 3

n-r= 3-2 = 1

Let x3 = k

-4x1 - 2x2 = 0

-4x2 + 4x3 = 0

-x2 = -x3

x2 = x3 = k

-4x1-2x2 = 0

-2x1 = x2

x2 = -2x1 = -2k

x1 =
−𝑥2

=
−𝑘

2 2

𝑥1

 Eigen vector x3 = [𝑥2]  = [
𝑥3
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−𝑘/2

𝑘
𝑘

]



2

−1
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3

x3 =
𝑘 [ 2 ]

Three eigen vectors are

2
x1 = [−2],

1

2
x2 = [−1],

2

−1

x3 = [ 2 ]
2

6 −2 2

2) Find the characteristic roots and find the corresponding eigen vectors [−2 3 −1]
2 −1 3

6 −2 2

Sol :- Step1: Given Matrix A = [−2 3 −1]
2 −1 3

Step 2:- Characteristic Egn |A-I| = 0 

6 −  −2 2

[ −2 3 −  −1 ] = 0

2 −1 3 − 

3-122+36-32 = 0

 (-2) (2-10+16) = 0 

(-2) (-2) (-8) = 0

 = 2, 2, 8

Step 3:- Eigen values are 2,2,8

Eigen Vectors:- The eigen vector of A Corresponding to  = 2 

[A -I]x = 0, [A-2I]x = 0

1 𝑥3 0

−4 −2 2 𝑥1 0

[−2 1 −1] [𝑥2] = [0]
2 −1

The eigen vector of A corresponding to  = 8 

[A-8I]x = 0

−2 −2 2 𝑥1 0

[−2

2 −1 −5 𝑥3 0
−5 −1] [𝑥2] = [0]

−2 −2
R2R2-R1 ; R3R3-R1 [ 0

2 𝑥1 0

−3 −3] [𝑥2] = [0]

R3R3-R1

2 𝑥1

2 −3 −3 𝑥3 0

0−2 −2

[ 0 −3 −3] [𝑥2] = [0]
2 0 0 𝑥3 0

r=2, n = 3, 1-r = 3-2 = 1 we have to select one variable to the one constant i.e, x3 = k

-2x1-2x2+2x3 = 0

-3x2+(-3)x3 = 0

x2 = -x3 = -k
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x1 = 2k

𝑥1

 x3 = [𝑥2]
𝑥3

2𝑘 2

𝑘 1

= [−𝑘] = k [−1]

1 −1 2

 Eigen vectors are x1 = [2], x2 = [ 0 ], x3 = [−1]
0 2 1

Exercise problems

I. Find the eigen values & Eigen vectors of the following matrixs. 

1 1 1

1) A = [1 1 1]
1 1 1

−1 −1 1

Ans:-  = 0,0,3  Eigen Vectors [ 1 ], [ 0 ],[1]
1 1 1

8 −6 2

2) A = [−6 7 −4]
2 −4 3

1 −2 2

Ans:-  = 0,3,15 Eigen Vectors [2], [−1],[−2]
2 2 1

3 1 1

3) A = [−1 5 −1]
1 −1 3

1

Ans:-  = 2,3,6 Eigen Vectors [1]
1

2 2 0

4) A = [2 5 0]
0 0 3

−2 0 1

Ans:-  = 1,3,6  Eigen Vectors [ 1 ], [0],[2]
0 1 0

1 2 −1

5) A = [0 2 2 ]
0 0 −2

1 2 −4/3

Ans:-  = 1,2,-2  Eigen Vectors [0], [1],[ 1

0 0 −2

]

1 3 4

6) A = [0 2 5]
0 0 3

1 1 19

Ans:-  = 1,2,3 Eigen Vectors [0], [0],[10]
0 0 2



Eigen values of Hermitian, Skew Hermitian and Unitary Matrix

Note:- Hermitian  𝐴𝜃= A

Skew Hermitian  𝐴𝜃= -A 

Unitary A𝐴𝜃 = I

Where 𝐴𝜃= (Ā)T

4

1 + 3i 7
1) Find the eigen values of the following matrix A = [ 1 − 3i]& S.T. Hermitian.

Sol:- A = [
4 1 − 3i] Characteristic equation of A is |A-I| = 0

1 + 3i 7

[ 4 −  1 − 3i] = 0

1) S.T. A = [

1 + 3i 7 − 

A is Hermitian AƟ=A ; Eigen values of Hermitian matrix are real.

Exercise Problems:-

3i

−2 + i i

2 − i]

Skew Hermitian & find eigen values Ans:-  = 4i, -2i

C =  [
1/2i √3/2

√3/2 i/2
2) S.T. ]

S.T. Unitary & find eigen values Ans:- −√3/2 + i/2

3) P.T. 1/√3 = [
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1 1 + i]
1 − i −1

is unitary and determine the Eigen values & Eigen Vectors.

4) S.T.
i 0

[0 i]

is skew hermitian and find the eigen values & eigen vectors.

5)
1 + i 1 − i

Verify that the matrix A = 1/2 [ ] has eigen values with unit modules.
1 − i 1 + i

6)

0 i 0

i 0 0

Show that A = [0 0 i ] is skew Hermitian and unitary and find the eigen values and eigen

vectors.

Diagonalization of a matrix

A matrix A is diagonalizable if there exists an invertible matrix P such that P-1AP = D where D is a 

diagonal matrix. Also the matrix P is then said to diagonalize A or transform A to diagonal form.

Similarity of Matrix:- Let A & B be square matrices to A It Ǝ a non – singular matrix P of order n  B 

P-1AP. It is denoted by A B. The transformation y = Px is called similarity transformation.

Thus a matrix is said to be diagonalizable if it is similar to a diagonal matrix.

Note:- A is nxn matrix. Then A is similar to a diagonal matrix D = diag [1, 2, ….. n]

 An invertible matrix P = [x1,x2 ….. xn]  P-1AP=D = diag ([+, +, ….. n)
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Modal & Spectral Matrix:-

The matrix P in the above result which diagonalise the square matrix A is called the Modal matrix and 

the resulting diagonal D is called is known as spectral matrix.

Note:- If the eigen values of an nxn matrix are all district then it is always similar to a diagonal matrix. 

Calculation of power of a matrix:-

Let A be the Square matrix. Then a non-singular matrix P can be found

 D = P-1AP

D2 = (P-1AP) (P-1AP) = P-1A(PP-1)AP = P-1A2P 

D3= P-1A3P

Dn = P-1AnP …………….. (1) 

Premultiply (1) by P & Post multiply by P-1

PDnP-1 = P(P-1AnP)P-1 = (PP-1) An (PP-1) = An

 An = PDnP-1

An = P

𝑛 0 0 . 0
𝖥

0 2𝑛 0 . 0

0 0 3𝑛 . 0

I . .
L0 0 0 . 𝑛𝑛

. . .   I

1

P-1

1)

1

Diagonalize the matrix A = [ 0

−4

1 1

2 1] find A4 (or) find a matrix P which transform the

4 3
matrix

1 1 4

A = [ 0 2 5] to diagonal form Hence calculate A4 and find the eigen value A-1

−4 4 3

1 1 4

Sol:- A = [ 0 2 5] Characteristic Equaltion |A-I| = 0

−4 4 3

[
1 −  1 1

0 2 −  1

−4 4 3 − 

] = 0

(1-) (2-) (3-) = 0

 = 1,2,3

Characteristic vector corresponding to  = 1 

[A-I] = 0

[A-I] = 0

𝑥

𝑧

0 1 1 0

[ 0 1 1] [𝑦] = [0]
−4 4 2 0

Y+z = 0;

y+z = 0;

 y = -z 

let z = k
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-4x+4y+2z = 0 y = - k 

X = -k/2

𝑥 −2𝑘/2

𝑘
𝑘

] = −𝑘/2Eigen vector x1 = [𝑦] = [
𝑧

1

 x1 = [ 2 ]
−2

1

[ 2 ]
−2

Characteristic vector corresponding to  = 2 

[A-I]x = 0; [A-2I]x = 0

𝑥

𝑧

−2 1 1 0

[ 0 0 1] [𝑦] = [0]
−4 4 1 0

−1 1 1 𝑥 0

R3R3-4R1 [ 0 0 1 ] [𝑦] = [0]
0 0 −3 𝑧` 0

−1 1 1 𝑥 0

R3R3-3R2 [ 0 0 1] [𝑦] = [0]
0 0 0 𝑧 0

r=2, n = 3, n-r = 3-2 = 1 we have to give one variables to the one  arbitrary constant.

-x+y+z=0; z = 0

Then we take x (or) y = y

 y = k

-x+k+0 = 0

x=k, y=k, z=0

𝑥
 x2 = [𝑦]

𝑧

𝑘 1

0 1

= [𝑘] = k [1]

 Eigen value of A-1

Characteristic vector corresponding to  = 3

𝑥

𝑧

𝑥

R3R3-2R2

1

[ 0

0

−2 1 1 0

[ 0 −1 1] [𝑦] = [0]
−4 4 0 0

−2 1 1

R3R3-4R1 [ 0 −1

0 2 −2

−2 1

−1

0 0

𝑧

𝑥

𝑧

0

1 ] [𝑦] = [0]
0

0

1] [𝑦] = [0]
0

r=2, n=3, n-r=3-2 = 1

-2x+y+7 = 0

-y+z=0 

Let z = k
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-y=-z=-k  y = k

-2z = -y-z = -k-k

-2x=-2k  x = k

Eigen vector x3 =

𝗑
[𝑦]

𝑥
= [[𝑦]]

1

k = [1]
z 𝑧 1

P = [x1 x2  x3]

1 1 1
Model matrix = p = [ 2 1 1]

−2 0 1

−1

P-1 = adjp/detp = [ 4

1

−3

0

−1]
−2 2 1

−1 1 0 1 1 1 1 1 1 1 0 0

P-1AP = [ 4 −3 −1] [ 0 2 1] [ 2 1 1] = [0 2 0]
0 3−4 4 3 −2 0 1 0

0 0

−2 2 −1

1

P-1AP = D = [0

0

=D

2) 2 0] = Diagonalization

0 3

Power of a matrix An = PDnP-1; A4=PD4P-1

1 1 1 0 0 −2 1 0

1 1] [0 16 0 ] [ 4 −3 −1]
1

A4 = [ 2

−2 0 1

−99 115

= [−100 116

−160 −160

0 0 81 −2 2 −1

65

65]
81

Eigen value of A-1 =1/ = 1/1,1/2,1/3

2.

1 2 3
find the diagonal matrix that will diagonaize the real symmetric matrix A= [2 4 6]

3 6 9

1 2 3
Also find the resulting diagonal matrix. (or) Diagonalize the matrix A= [2 4 6]

3 6 9

1 2 3
Sol:- A= [2 4 6] Characteristic Equation |A-I| = 0

3 6 9

1 −  2 3
[ 2 4 −  6 ] = 0

3 6 9 − 
(2-14) = 0

 = 0, 0, 14 Eigen roots  = 0, 0, 14 

Eigen vector corresponding to  = 14 

[A-14I]x = 0



[
3 𝑥1−13 2 0

2 −10 6 ] [𝑥2] = [0]
3 6 −5 𝑥3 0

x1 = 1, x2 = 2, x3 = 3

𝑥1 1
Eigen vector x1 = [𝑥2] = [2]

𝑥3 3

To the Eigen Vector corresponding to  = 0

[A-I]x =

1 2 3 𝑥1 0
[2 4 6] [𝑥2] = [0]
3 6 9 𝑥3 0

1 2 3 𝑥1 0
R2R2-2r1; R3R3-3R1[0 0 0] [𝑥2] = [0]

0 0 0 𝑥3 0

r=1, n = 3, n-r = 3 – 1 = 2

let x2 = k1, x3 = k2 

x1+2x2+3x3 = 0 

x1=-2k1-3k2

x2=k1  

x3=k2

Eigen vector = [
−2𝑘1 − 3𝑘2 −2

𝑘1
𝑘2

−21
 x1 = [2] , x2 = [ 1 ]

3 0

−3
]= k1[ 1 ] + k2[ 0 ]

0 1

−3
, x3 = [ 0 ]

1

Normalised Model matrix = p = [𝑥1

P =[
𝑥1 𝑥2 𝑥3

||𝑥1|| ||𝑥2|| ||𝑥3||
] =

𝑥2 𝑥3]

1/√14

= [2/√14

3/√14

1 −2 −3
= [2 1 0 ]

3 0 1

−2/√5 −3/√10  

1/√5

0

0

1/√10

]

3/√14

0

1/√14 2/√14

 P-1 = PT = [ −2/√5 1/√5

−3/√10 0 1/√10

]

3/√141/√14 2/√14

P-1AP=PTAP= [ −2/√5 1/√5

−3/√10 0 1/√10

1/√141 2 3
0 ] [2 4 6] [2/√14

3 6 9

2/√5 −3/√10

1/√5

0

0

1/√103/√14

]
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0 0 0
= [0 0 0 ] P-1AP=PTAP = D

0 0 14

\ A is reduced to diagonal form by orthogonal reduction.

Exercise problems:

1 0 0
1. Diagonalize the matrix A = [0

0
3

−1
−1]
3

by orthogonal reduction (or) Diagonalize the matrix.

2) Determine the diagonal matrix orthogonally similar to the following symmetric matrix

3
A = [−1

−1
5

1
−1]

1 −1 3

3) Determine the diagonal matrix orthogonally similar to the following symmetrix matrix

6
A = [−2

−2
3

2
−1]

2 −1 3

8 −8 −2
4) Diagonalize the matrix A = [4 −3 −2]

3 −4 1

1 0 −1
5) Find a matrix P which transorm the matrix A = [1

2

1
Hence calculate A4 (or) Diagonalize the matrix A = [1

2

2 1 ] to diagonal form.

2 3

0 −1
2 1 ]
2 3

6) Prove that the matrix A = [0 1] is not diagonalizable.
0 0

3 4
2 −1] cannot be diagonalized.

0 1

2
7) S.T. the matrix A = [0

0

Quadratic forms

Quadratic form:-

A homogeneous expression of the second degree in any number of variables is called a quadratic form.

An expression of the form Q = xTAx = ∑𝑛 . ∑𝑛 . aij x i x j where aij’s are constants is calledi=1 j=1

quadratic form in n variables x1, x2, …… xn. If the constants aij’s are real numbers it is called a real 

quadratic form. [x1, x2, …… xn]

Q = xTAx Ex-1) 3x2+5xy-2y2 is a quadratic form in two variables x & y

2) 2x2+3y2-4z2+2xy-3yz+5zx is a quadratic form of 3 variables x,y,& z 

Symmetric Matrix :-



Q = XTAX is a quadratic form where A is known as real symmetric matrix.

L2

2
𝑐𝑜𝑒ƒ ƒ . 𝑜ƒ 𝑥12 1 𝑐𝑜𝑒ƒ ƒ . 𝑜ƒ 𝑥1𝑥2

2

1 𝑐𝑜𝑒ƒƒ 𝑜 ƒ 𝑥1𝑥2

2 2
A = symmetric Matrix =

1 
𝑐𝑜𝑒ƒƒ 𝑜 ƒ 𝑥1𝑥2 𝑐𝑜𝑒ƒƒ. 𝑜 ƒ 𝑥22 1

𝑐𝑜𝑒ƒƒ 𝑜 ƒ 𝑥2𝑥3

2

I1 𝑐𝑜𝑒ƒƒ 𝑜 ƒ 𝑥1𝑥3 1 𝑐𝑜𝑒ƒ 𝑜 ƒ 𝑥2𝑥3 𝑐𝑜𝑒ƒƒ 𝑜 ƒ 𝑥32
I

2
Eg 1:- Write the symmetric matrix of the quadratic form x1

2-+6x1x2+5x2

Sol:- Symmetric matrix of the quadratic form x12+6x1x2+5x2
2

Sol:- A Symmetrix matrix = 𝑥1
𝑥2

[
1
6

2

6

5

1 32 ] =  [ ]
3 5

2 2
2) Find the symmetric matrix of the quadratic form x1 +2x2 +4x2x3+x3x4

𝑥1

= 𝑥2
𝑥3
𝑥4

Sol:- 𝑥1 𝑥2 𝑥3 𝑥4  

1 0 0 0
𝖥0 2 2 01

0 2 0 1

2
I

0
1

0
I

L0
2
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3)

𝑎 ℎ 𝑔
find the quadratic form of the given symmetric matrix A [ℎ 𝑏 ƒ ]

𝑔 ƒ 𝑐

𝑎 ℎ
Sol:- Quadratic form = XTAX = [x y z] [ℎ 𝑏

𝑔 ƒ

= ax2+by2+cz2+2hxy+2gxz+2fyz

𝑔 𝑥
ƒ ] [𝑦]
𝑐 𝑧

Exercise Problems:-

Write the Symmetrix matrix of the following quadratic forms

1.

2.

3.

4.

5.

6.

x1
2+2x2

2-7x32-4x1x2+8x1x3 

x1
2+2x2

2-7x3
2-4x1x2+8x1x3+5x2x3

2x1x2+6x1x3-4x2x3

x2+2y2+3z2+4xy+5yz+6zx 

x2+y2+z2+2xt+2yz+3zt+4t2

Obtain the quadratic form of the following Matrices.

1 2 3 2 1 5
1) [2 0 3] 2) [1 3 4] 3)

3 3 1 5 4 5
[
1 3
3 2

]
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1 2 3 4
2 5 6 7] 5) [3 4

]
3 6 0 1 4 5
4 7 1 2

4) [
6)

1 0 3
[0 2 5]
3 5 4

Canonical form

The conanical form of a quadratic form xTAx is yTDy (or) 1y1
2+2y2

2+…..+nyn
2

This form is also known as the sum of the squares form or principal axes form

1 0 0
Canonical form = yTDy = [y1y2 y3] [ 0

0

𝑦1

0 3 𝑦3
2 0 ] [𝑦2] = 1y1

2+2y2
2+3y3

2

Reduction of Quadratic form to canonical form by Linear Transformation.

Consider a quadratic form in n variables

xTAx and a non singular linear transformation x = Py then xT= [Py]T = yTPT 

xTAx = yTPTAPy = yT(PTAP)y = yTDy where D = PTAP

 xTAx = yTDy

Thus, the quadratic form xTAx is reduced to the canonical form yTDy. The diagonal Matrix D and 

matrix A and called Congruent matrices.

Reduction of Quadratic

Nature of the Quadratic form

The quadratic form xTAx in n variables is said to be

1) Positive definite:-

If r = n & s = n (or) if all the eigen values are +ve.

2) Negative definite:-

If r = n & s = 0 (or) if all the eigen values are –ve.

3) Positive semidefinite (or) semipositive:-

If r<n & s=r (or) if all the eigen values of A≥0 & atleast one eigen value is zero.

4) semi negative:-

If r<n & s = 0 (or) if all the eigen values of A≤0 & atlease one eigen value is zero.

5) Indefinite:-

In all other cases (or) some are positive, -ve.

Index of a real quadratic form

The number of positive terms in canonical form (or) normal form of a quadratic form is known 

as the index. It is denoted by ‘s’



Signature of a quadratic form

If r is the rank of a quadratic form & s is the number of positive terms in its normal form, then Ǝ

number of positive terms over the number of negative terms in a normal form of xTAx .  Signature = 

[+ve terms] – [-ve terms]

Note:- Signature = 2s-r 

Where sindex

rrank = no. of non zero rows. 

Short Answer question:-

1) Find the nature, rank, Index of a quadratic form 2x2+2y2+2z2+2yz

2 0 0
Sol :- A = [0 2 1]

0 1 2

2 −  0 0
|A-I| = 0 [ 0

0
2 − 

1
1

2 − 
] = 0

 = 1, 2, 3

Nature ;- all th eigen values are +ve

 positive definite 

Rank:- r = 3

Index : S = no. of positive terms = 3

Signature: - [+ve terms] – [-ve terms] = 3 – 0 = 3 

Discuss the nature of the given quadratic form

2 2 2
1) x1 +4x2 +x3 -4x1x2+2x1x3-4x2x3

2) x2+4xy+6xz-y2+2yz+4z2

Reduction of Quadratic form to canonical form by orthogonal reduction:

1) Write the coefficient matrix A associated with the given quadratic form

2) A = symmetric Matrix = [ ]

3) Find the eigen values & eigen vectors.

4) Model Matrix P = [x1 x2 x3]

𝑥1
5) Normalized model matrix

6) Find P-1; P-1 = PT

Ṕ = [ ||𝑥1|| ||𝑥2||

1 0 0
7) P-1AP = PTAP = D = [ 0 2 0 ]

0 0 3

𝑥2 𝑥3

||𝑥3||]
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𝑦1

0 ] [𝑦2]
1 0 0

8) Canoniclal form = yTDy = [y1 y2 y3] [ 0 2

0 0 3 𝑦3

= 1y1
2+2y2

2+3y3
2

9) Linear transformation is x = Py,

1. Reduce the quadratic form 3x2+2y2+3z2-2xy-2yz to the normal form by orthogonal 

transformation . Also write the rank, Index, nature and signature.

3 −1 0
Sol:- given quadratic form 3x2+2y2+3z2-2xy-2yz A = [−1

0
2

−1
−1]
3

Characteristic equation is |A-I| = 0

3 −  −1 0
[ −1 2 −  −1 ] = 0

0 −1 3 − 

 = 3, 1, 4; eigen values  = 3, 1, 4

1
Eigen vectors x1 = [ 0 ]

−1

1 1
, x2 = [2] , x3 = [−1]

1 1

1 1
2 −1]
1 1

1
P = [x1 x2 x3] [ 0

−1

P = normalized model matrix P=[e1 e2 e3] = [

−1/√2

1/√2 1/√6

0 2/√6

1/√6

1/√6

−1/√6]  

1/√6

1/√2

P is orthogonal P-1 = PT = [1/√6

1/√6

0 −1/√2

2/√6 1/√6 ]

−1/√6 1/√6

−1/√21/√2 0

P-1AP = PTAP =[1/√6 2/√6

1/√3 −1/√3

1/√6 ] [−1
3 −1 0

2 −1] [
0 −1 31/√3 −1/√2

1/√2 1/√6

0 2/√6

1/√6

1/√3

−1/√3]  

1/√3
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3 0 0
= [0 1 0] = D & the quadratic form will be reduced to the normal form

0 0 4

Canonical form = yTDy

3 0 0 y1
= [y1 y2 y3] [0 1 0] [y2]

0 0 4 y3

= 3y1
2+y2

2+4y3
2

Index :- No.of positive terms = S = 3



Rank:- r = 3

Nature:- all eigen values are +ve = S = 3

Signature:- = [no of +ve terms] – [no. of –ve terms]

= 3-0 = 3

Orthogonal transformation is x = Py

x
x= [y] = [

z

1/√3

−1/√2

1/√2 1/√6

0 2/√6

1/√6 1/√3

y1

y3
−1/√3] [y2]

x= y1/√2+ 1/√6y2 + 1/√3 y3 

y= 2/√6y2 - 1/√3 y3

z= -1/√2y1+ 1/√6y2 + 1/√3 y3 

Exercise:

Reduce the Quadratic form to canonical form by orthogonal Reduction. And write the transformation, 

nature index, rank, signature

1) 2x2+2y2+2z2-2xy+2zx-2yz
2 2 2

2) x1 +3x2  +3x3 -2x2x3

3) 3x2+5y2+3z2-2yz+2zx-2xy

4) 6x2+3y2+3z2-2yz+4zx-4xy
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1
2) for the matrix A = [0

0

2 −3
3 2 ] find the eigen values of 3A3+5A2-6A+2I

0 −2

[

1 2 −3
Sol:- A=[0 3 2 ] characteristic egn is |A-I| = 0

0 0 −2

−31 −  2
0 3 − 

0 0 −2 − 

2 ] = 0

(1-) (3-) (-2-) = 0; =1,3,-2

 is the Eigen value of A & f(A) is a polynomial in A, then the eigen value of f(A) is f() 

f(A) = 3A3+5A2-6A+2I

Then the eigen value of f(A) are 

f(1) = 3(1)3+5(1)2-6(1)+2 = 4

f(3) = 3(3)3+5(3)2-6(3)+2(1) = 110

f(-2) = 3(-2)3+5(-2)2-6(-2)+2(1) = 10

Thus the Eigen value of 3A3+5A2-6A+2I are 4, 110, 10
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1
P.T. the matrix A = [0 ] is not diagonalizable.

0 0

Sol:- The characteristic equation is |A-I| = 0

[−
0 −

1 ] = 0 2=0

 = 0,0

= 0, The characteristic vector. [A-I]x = 0

1 x1 0
= [0 ] [ ] = [ ]

0 0 x2 0

x2=0, x1=k

k 1
0 0

The characteristic vector is [ ] = K [ ]

1
0

The given matrix has only one i.j. charactestic vector [ ] corresponding to repeated characteristic value

‘0’

The matrix is not diagonalizable

Note: A is nilpolent matrix A is not diagonalised.

Eg:- Determine the eigen values & eigen vectors of B = 2A2-1/2A+3I where A= [
8 −4
2 2

]

−4Sol:- A = [8 ] characteristic equation is
2 2

|A-I| = 0

[8 − 

2 2 − 
−4 ] = 0  (8-) (2-)+8 = 0

16-8-2+2+8=0

2-10+24=0

2-6-4+24=0

(-6) – 4(-6)=0

(-6) (-4)=0

= 6, 4

B= 2A2- ½ A+3I

 is the eigen value of A 

Then the eigen value of B is

B= 2(6)2 – ½ (6)+3, B = 2(4)2 – ½ (4)+3 = 72, 33

Eigen value of B is 33,72

B = 2A2 - ½ A + 3I= [112 −80] - [4 −2
40 −8 1

3 0 111 −78
1 ] + [ ]  = [ ]

0 3 39 −6



58

Characteristic Equation |B-I] = 0

39
[111 −  −78

−6 − 
] = 0 2+105 – 2376 = 0

 = 33, 72

Eigen value of B are 33 & 72

=33, the eigen vector of B is given by [B-33I]x = 0

39 −39 x2
[78 −78 x1 0

0
] [ ] = [ ]

 x = 1, x2 =1

1
=33, x1= [ ]

1

=72, the eigen vector of B is given by [B-72I]x = 0

[39 −78 x1 0
39 −78 x2 0

] [ ] = [ ]

 x2 = 1, x1 =2

2
The eigen vector for =72, x2= [ ]

1

Find the inverse transformation of y1=2x1+x2+x3, y2 = x1+x2+2x3, y3 = x1-2x31)

Sol: The given transformation can be written as

y1

[y2] = [1
2 1 1 x1

1 2 ] [x2]
y3 1 0 −2 x3

Y=Ax

2 1 1
|A| = [1 1 2 ] = -1 ≠ 0

1 0 −2

Thus the matrix A is non-singular and hence the transformation is regular. The inverse transformation is

given by x=A-1y

x1 2 −2 −1
[x2] = [−4
x3 1

y1

−1 −1 y3
5 3 ] [y2]

x1= 2y1-2y2-y3 

x2=-4y1+5y2+3y3

x3= y1-y2-y3

2) S.T. the transformation y1=x1cosθ = x2singθ, y2 = -x1sinθ+x2cosθ is orthogonal. 

Sol:- The given transformation can be written as Y=Ax

Y =
y1
y2

] A = [
− i θ c θ

c θ i θ x1
x2

], x = [ ]
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Here the matrix of transformation is A = [ cosθ sinθ], A-1 = [cosθ 

cosθ sinθ−sinθ cosθ

−sinθ]= AT

the transformation is orthogonal.

Cayley – Hamilton Theorem

Theorem:- Every square matrix statisfies its own characteristic equation.

Applications of cayley – Hamilton Theorem

The important applications of Cayley – Hamilton theorem are

1) To find the inverse of a matrix

2) To find higher powers of a matrix.

1 2 −1
1) If A = [2 1 −2] verify cayley – Hamilton theorem

2 −2 −1

Find A-1& A4 using cayley – Hamilton theorem.

1 2 −1
Sol: A = [2 1 −2] Characteristic Equation |A-I| = 0

2 −2 −1

[
1 −  2 −1

2 1 −  −2

2 −2 −1 − 

] x3-32-3+9=0

By cayley – Hamilton theorem, matrix A should satisfy its characterstic Equation. 

i.e., A3-3A2-3A+9I = 0

1 2 −1
A = [2 1 −2]

2 −2 +1

1 2 −1 1 2 −1 3 6 −6

A2=A.A = [2 1 −2] [2 1 −2] =[0 9 −6]
2 −

2
−1 2 −2 1 0 0 3

3 6 −6 1 2 −1 3 24 −21
A3=A2.A = [0 9 −6] [2 1 −2] =[6 21 −24]

0 0 3 2 −2 1 6 −6 3

A3 -3A2-3A +9I =

3 24 −21 3 6 −6 1 2 −1 1 0 0 0 0 0
[6 21 −24] -3 [0 9 −6] -3 [2 1 −2] +9 [0 1 0]= [0 0 0]
6 −6 3 0 0 3 2 −2 1 0 0 1 0 0 0

A3-3A2-3A+9I = 0



Hence cayley – Hamilton is verified. 

To find A-1:-

Multiplying equation (1) with A-1 on b/s 

A-1[A3-3A2-3A+9]=0

A2-3A-3AI+9A-1 = 0 

9A-1 = 3A+3I-A2

9
A-1 =

1
[3A+3I-A2]

9 9
A-1 =

1
[3A+3I-A2] =

1 {[6
3 6 −3 3

3 −6] + [0
6 −6

0 0 3 6 −6
3 0] −  [0 9 −6]}

3 0 0 3 0 0 3

=

1

𝖥3
0

2 −1

3 3

3 3

60

I2 −2 1I  
L3

1

31

0

Find A4 :-

Multiplying with A 

A[A3-3A2-3A+9I] = 0 

A4 = 3A3+3A2-9A

6 −6
21 −24] + 3[0 9 −6] - 9[2

3 24 −21 3
= 3 [6

6 −6 3 0 0 3 2

1 2 −1 9
1 −2] = [0

−2

72 −72
81 −72]

1 0 0 9

1) Show that the matrix satisfies its characteristic Equation Find A-1& A4 (or) verify cayley Hamilton 

Theorem. Find A-1& A4

1)

1 −2 2
A = [1 2 3]

0 −1 2

1 2 2
A = [2 1 2]

2 2 1

1 0 3
A = [2 −1 −1]

1 −1 1

1 1 3
A = [ 1 3 −3]

−2 −4 −4

3 4 1
A = [ 2 1 6]

−1 4 7

2)

3)

4)

5)

1) using cayley – Hamilton theorm. Find A8, If A = [1
2 1

2]
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Sol:- A = [
1 2
2 1

] Characteristic Equation

|A-I| = 0

] = 0[1 −  2

2 −1 − 

2-5 = 0

By cayley – Hamilton Theorem. Every square matrix satisfied its characteristic equation. 

A2-5=0

A2= 5I

A8 = A2.A2.A2 = [5I].[5I].[5I] 

A8 = 625I

2 1 1
2) If A = [0 1 0] , find the value the matrix A8-5A7+7A6-3A5+A4-5A3+8A2-2A+I

1 1 2

Sol: The characteristic Equation |A-I| = 0

[
2 −  1 −1

0 1 −  0

1 1 2 − 

] = 0

x3-52-7-3=0 By Cayley Hamilton theorm 

A3-5A2+7A-3I=0

We can rewrite the given expression as A5[A3-5A2+7A-3I] + A[A3-5A2+7A-3I] 

A8-5A7+7A6-3A5+A4-5A3+8A2-2A+I

= A5[A3-5A2+7A-3I] + A[A3-5A2+8A-2I]=I

= A5(0) + A[A3-5A2+7A-3I] + A2+A+I=I 

A[A3-5A2+7A-3I] + (A+I)]+I

= A2+A+I

1 0] + [0
5 4 4 2 1 1 1 0 0 8 5 5

But A2+A+I = [0 1 0] + [0 1 0] = [0 3 0]
4 4 5 1 1 2 0 0 1 5 5 8

Exercise:

1) If A = [ 3 1
−1 2

] write 2A5-3A4+A2-4I as a linear polynomial in A

Sol:- A = [ 3 1
−1 2

] |A-I| = 0

[3 −  1

−1 2 − 
] = 0 2-5+7 = 0

By cayley – Hamilton Theorm,

A must satisfy its characteristic equation.
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A2-5A+7I = 0 

A2= 5A-7I 

A3 = 5A2-7A 

A4=5A3-7A2 

A5=5A4-7A3

2A5-3A4+A2-4I

=2[5A4-7A3]-3[5A3-7A2]+[5A-7I]-4I

= 7A4-14A3+A2-4I

= 7[5A3-7A2]-14A3+A2-4I

= 21A3-48A2-4I

= 21(5A2-7A) -48A2-4I

= 57A2-147A-4I

= 57(5A-7I) -147A-4I

= 138A-403I which is a linear poly in A

Unit – II(Important questions)

1. Find all the eigen values of A2+3A-2I, If A = [
1 2
1 0

] 2 Marks

2.  Find the nature, index, signature of the quadratic form 3x2+5y2+3z2. 3Marks

8
3.  Find the Eigenvalues & Eigenvectors of the matrix A = [−6

−6
7

2
−4] 5 Marks

2 −4 3
1 2 3

4. Verify cayley – Hamilton theorem for the matrix A = [2 4 5] Express

3 5 6
B= A8-11A7-4A6+A5+A4-11A3-3A2+2A+I as a quadratic poly in A 5 Marks

5.

1 1 1
Diagonalize the Matrix A = A = [ 0 2 1] hence find A4 5 Marks

−4 4 3
6.  Reduce the Q.F. to C.F. C.F. Hence find its nature x2+y2+z2-2xy+4xz+4yz 5 Marks

2 5 7
7. Find the sum & product of the Eigen values of the matrix A [1 4 6] 2Marks

2 −2 3
1 5 7

8. Write the quadratic form Corresponding to the matrix A = [5 4 6] 3 Marks

7 6 3
−3 −7 −5

9. Find the eigen values 5A2-2A2+7A-3A-1+I if A = [ 2 4 3 ] 5 Marks

1 2
4 6

2
6

10. Using cayley – Hamilton Then find A-1& A-2 if A = [ 1 3 2 ] 5 Marks

−1 −4 −3



11. Reduce the Q.form 8x2+7y2+3z2+12xy+4xz+8yz to canonical form and find rank, nature, index & 

signature 10 Marks

Properties of Eigen Values:

Theorm 1: The sum of the eigen values of a square matrix is equal to its trace and product of the eigen 

values is equal to its determinant.

Proof: Characterristic equation of A is . |A-λI|=0

i.e, 21

a12 a1n

2n
a

a11 






 

 n1 n2 nn 

L

22

L L

L

a   L a

L

a a L a   


 𝑒𝑥𝑝𝑎𝑛𝑑i𝑛𝑔 𝑡ℎi𝑠 𝑤𝑒 𝑔𝑒𝑡

a11 a22 L ann  a12 (a polynomial of degree n – 2)

+ a13 (a polynomial of degree n +2) + … + = 0

⟹ (−1)𝑛[𝜆𝑛 − (𝑎11 + 𝑎22 + … . +𝑎𝑛𝑛)𝜆𝑛−1 + 𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚i𝑙𝑎 𝑜 ƒ 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛 − 2)] 

(−1)𝑛 λ𝑛 + (−1)𝑛+1(𝑇𝑟𝑎𝑣𝑒 𝐴)λ𝑛−1 + +𝑎 𝑝𝑜𝑙𝑦𝑛𝑜𝑚i𝑎𝑙 𝑜 ƒ 𝑑𝑒𝑔𝑟𝑒𝑒 (𝑛 − 2)i𝑛 λ = 0

𝐼ƒ λ1, λ2 … . . λ𝑛 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 𝑜ƒ 𝑡ℎi𝑠 𝑒𝑞𝑢𝑎𝑡i𝑜𝑛

(−1)𝑛+1𝑇𝑟(𝐴)

(−1)𝑛
𝑠𝑢𝑚 𝑜ƒ 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 = = 𝑇𝑟(𝐴)

𝑢 𝑟 𝑡 ℎ𝑒𝑟 | − λ | = (−1)n λn +  . +a0

𝑝𝑢𝑡 𝜆 = 0 𝑡ℎ𝑒𝑛 |𝐴| = 𝑎0

(−1)𝑛λn + an−1λn−1 + an−2λn−2 +  … . + a0 = 0

𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑜 ƒ 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡𝑠 =
(−1)𝑛 𝑎0

(−1)𝑛
= 𝑎0

𝑏𝑢𝑡 𝑎0 = |𝐴| = det 𝐴

𝐻𝑒𝑛𝑐𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡

Theorm 2: If is an eigen value of A corresponding to the eigen vector X, then is eigen value An 

corresponding to the eigen vector X.

Proof: Since is an eigen value of A corresponding to the eigen value X, we have

AX= ----------(1)

Pre multiply (1) by A, A(AX) = A( X)

(AA)X = (AX) 

A2X= ( X)

A2X=
2X
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2 is eigen value of A2 with X itself as the corresponding eigen vector. Thus the theorm is true for n=2

i.e,, AKX = KX------------(2)

Premultiplying (2) by A, we get 

A(AkX) = A(  KX)

(AAK)X= K(AX)= K( X) 

AK+1X= K+1X

K+1 is eigen value of K+1 with X itself as the corresponding eigen vector. 

Thus, by M.I., n is an eigen value of An

Theorm 3: A Square matrix A and its transpose AT have the same eigen values.

ITProof: We have (A- I)T = AT-

= AT- I

|(A- I)T|=|AT- I| (or)

|A- I|=|AT- I|

|A- I|=0 if and only if |AT- I|=0

Hence the theorm

Theorrm 4: If A and B are n-rowed square matrices and If A is invertible show that A-1B and B A-1 

have same eigen values.

Proof: Given A is invertile

i.e, A-1 exist

P-1w e know that if A and P are the square matrices of order n such that P is non-singular then A and 

AP hence the same eigen values.

Taking A=B A-1 and P=A, we have

B A-1 and A-1 (B A-1 )A have the same eigen value

B A-1 and (A-1 B)( A-1 A) have the same eigen values 

B A-1 and (A-1 B)I have the same eigen values

B A-1 and A-1 B have the same eigen values

Theorm 5: If 1,  2, …..   n are the eigen values of a matrix A then k  1, k  2, ….. k  n are the eigen

value of the matrix KA, where K is a non-zero scalar.

Proof: Let A be a square matrix of order n. Then |KA- KI| = |K(A- I| = Kn |A- I|
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Since K≠0, therefore |KA- KI| = 0

Thus k  1, k 2 … k n are the eigen values of the matrix KA

 1, 2 … n are the eigen values of the matrix A

Theorm 6: If is an eigen value of the matrix. Then  +K is an eigen value of the matrix A+KI

Proof: Let be an eigen value of A and X the corresponding eigen vector. Then by definition AX= 

Now (A+KI)X =

=

=(

1 – K, 2 – K, … n – K,Theorm 7: If 1, 2 … n are the eigen values of A the

Proof: Since

The characteristic polynomial of A is

|A – I| = (  1 – ) (  2 – ) … (  n – )-----------------------1

Thus the characteristic polynomial of A-KI is

|(A – KI) – I| = |A – (k+ )I|

= [

Which shows that the eigen values of A-KI are

Theorm 8: If are the eigen values of A find the eigen values of the matrix 

Sol: First we will find the eigen values of the matrix A-

Since are the eigen values of A 

The characteristics polynomial is

| A- ( (

The characteristic polynomial of the matrix (A-

( +K)]

|A- -KI| = |A-( +K)I|

= [

= [ K)]

Which shows that eigen values of (A- I) are 

We know that if the eigen values of A are then the eigen values of A2 are
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Theorm 9: If is an eigen value of a non-singular matrix A corresponding to the eigen vector then –1

is an eigne vector of A–1 and corresponding eigen vectgor X itself.

Proof: Since A is non-singular and product of the eigen values is equal to |A|. it follows that none of the 

eigen vectors of A is o.

≠0 andIf s an eigen vector of the non-singular matrix A and X is the corresponding eigen vector

AX= . Premultiplying this with A–1, we get A–1(AX) = A–1(   X)

 (A1A)X  A1X  IX  A1X

X = A1X  A1 X  1X

Hence 1 is an eigen value of A1

Theorm 10: If 

atrix Adj A

Proof: Since is an eigen value of a non-singular matrix, therfore ≠0

Also is an eigen value of A implies that there exists a non-zero vector X such that AX = ------ (1)


A

X  (adj A)X on (adj A)X 
A

X
 

Theorm 11: If

Proof: We know that if is an eigen value of a matrix A, then is an eigen value of A–1

Since A is an orthogonal matrix, therefore A–1 = A1

is an eigen value of

But the matrices A and A1 hence the same eigen values, since the determinants |A- I| and |A1- I| are 

same.

Hence is also an eigen value of A.

Theorm 12: If is eigen value of A then prove that the eigen value of B = a0A
2+a1A+a2I is a0

2+a1

+a2

Proof: If X be the eigen vector corresponding to the eigen value  , then AX = X --- (1)
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Premultiplying by A on both sides

a0A
2+a1A+a2I  

a0A
2+a1A+a2I)X

a0A
2 X+a1AX+a2X 

a0A
2 X+a1 X+a2X (a0

2 X+a1 +a2 )X

(a0
2 X+a1 +a2 ) is an eigen value of B and the corresponding eigen vector of B is X.

Theorm 14: Suppose that A and P be square matrices of order n such that P is non singular then A and 

P-1AP have the same eigen values.

Proof: Consider the characteristic equation of P-1AP 

It is |( P-1AP)-λI) = | P-1AP-λ P-1IP|

= | P-1 (A-λI)P| = | P-1 | |A-λI| |P|

= |A-λI| since |P-1 | |P| = 1

Thus the characteristic polynomials of P-1AP and A are same. Hence the eigen values of P-1AP and A 

are same.

Corollary: If A and B are square matrices such that A is non-singular, then A-1B and BA-1 have the 

same eigen values.

Proof: In the previous theorm take BA-1 in place of A and A in place of B. 

We deduce that A-1(BA-1)A and (BA-1) have the same eigen values.

i.e, (A-1B) (A-1A) and BA-1 have the same eigen values. 

i.e, (A-1B)I and BA-1 have the same eigen values

i.e, A-1B and BA-1 have the same eigen values

Corollary2: If A and B are non-singular matrices of the same order, then AB and BA have the same 

eigen values.

Proof: Notice that AB=IAB = (B-1B)(AB) = B-1 (BA)B

Using the theorm above BA and B-1 (BA)B have the same eigen values. 

i.e, BA and AB have the same eigen values.

Theorm 15: The eigen values of a triangular matrix are just the diagonal elements of the matrix.

Proof: Let A = be a triangular matrix of order n
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The characteristic equation of A is |A- I|=0

i.e.,

i.e, (a11- ) (a22- ) ….. (ann- )=0

a11 , a22 ,…. ann

Hence the eigen values of A are a11 , a22 ,…. ann which are just the diagonal elements of A.

Note: lly we can show that the eigen values of a diagonal matrix are just the diagonal elements of the 

matrix.

Theorm 16: The eigen values of a real symmetric matrix are always real.

Proof: Let be an eigen value of a real symmetric matrix A and Let X be the corresponding eigen

vector then AX= 

Take the conjugate 

Taking the transpose 

Since

Post multiplying by X, we get ------- (2)

T T

Premultiplying (1) with , we get X AX X X ------ (3)

     0(1) – (3) gives  X T
X  0 but

      is real. Hence the result follows

Theorm 17: For a real symmetric matrix, the eigen vectors corresponding to two distinct eigen values 

are orthogonal.

Proof: Let λ1, λ2 be eigen values of a symmetric matrix A and let X1, X2 be the corresponding eigen 

vectors.

Let λ1 ≠ λ2 we want to show that X1 is orthogonal to X2 (i.e.,

Sice X1, X2 are eigen values of A corresponding to the eigen values λ1, λ2 we have

AX1= λ1X1 ----- (1) AX2 = λ2 X2 ------- (2)

Premultiply (1) by

Taking transpose to above, we have

(3)
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Premultiplying (2) by

Hence from (3) and (4) we get

(Q 1 2 )

Note: If λ is an eigen value of A and f(A) is any polynomial in A, then the eigen value of f(A) is f(λ)

Objective type questions

69

]1.  The Eigen values of [ 6 3
are

−2 1

b) 2,4

[ ]

a) 1,2 c) 3, 4 d) 1, 5

2.  If the determinant of matrix of order 3 is 12. And two eigen values are 1 and 3, then the third eigen

value is [ ]

a) 2 b) 3 c) 1 d) 4

2
3.

1 −1

If A = [0 2

0 0

a) 1, 1, 2

4] then the eigen values of A are

3

[ ]

b) 1, 2, 3 c) 1, ½ , 1/3 d) 1, 2, ½

1 −2 2

4. The sum of Eigen values of A = [0 1 3] is [ ]

3 −1 2

a) 2 b) 3 c) 4 d) 5

5. If the Eigen values of A are (1,-1,2) then the Eogen values of Adj A are

a) (-2,2,-1) b) (1,1,-2) c) (1,-1,1/2) d) (-1,1,4)

[ ]

6. If the Eigen values of A are (2,3,4) then the Eigen values of 3A are 

a) 2,3,4 b) ½, 1/3, ¼ c) -2,3,2 d) 6,9,12

[ ]

7. If the Eigen values of A are (2,3,-2) then the Eigen value of A-3I are 

a) -1,0,-5 b) 2,3,-2 c) -2,-3,2 d) 1,2,2

[ ]

8. If A is a singular matrix then the product of the Eigen values of A is

a) 1 b) -1 c) can’t be decided d) 0

[ ]



1 2

9.  The Eigen vector corresponding to × = 2 □ □ [0 2

−1

2 ] is [ ]
0 0 −2

2

a) [1]
0

−1

b) [ 1 ]
0

1

c) [1]
1

1

d) [ 1 ]
−1

2 1

10. If two Eigen vectors of a symmetric matrix of order 3 are [−1] and [ 2 ] then the third eigen vector

0 −1
is [ ]

1 1 1 1

a) [ 2 ]
−1

b) [2]
3

c) [2]
0

d) [2]
5

11. The Eigen values of [ 5
−1 2

2
are 3 and 4 then the eigen vectors are

] [ ]

1 1

1 2
a)  [ ] [ ]

1 1

−1 −2
b) [ ] [ ]

−1 1

1 −2 1 2

1 −1
c) [ ] [ ] d) [ ] [ ]

12. If the trace of A (2x2 matrix) is 5 and the determinant is 4, then the eigen values are [ ]  

a) 2, 2 b) -2, 2 c) -1, -4 d) 1, 4

13. Sum of the eigen values of matrix A is equal to the

a) Principal diagonal elements of A b) Trace of matrix A c) A&B d) None

[ ]

2

−3 3
14. If A = [ 4 ] then A-1 = [ ]

a)
1 [7□ − □] b)

1 [5□ − □]
6 4

c)
1 [7□ − □] d)

1 [7□ − □]
2 18

15. If A = [6 2 ] then 2A2-8A-16I =
1 −1

a) I b) 2A c) A-I d) 5I

[ ]

16. Similar matrices have same

a) Characteristic Polynomial b) Characteristic equation

[ ]

c) Eigen values d) All the above

1 2 5

17. If A = [0 −1 2] then A-1 =

0 0 2

[ ]

2
a)

1 [□ + □ − □2]
2

b)
1 [□ + □ + □2]

c)
1 [□ + 2□ − □2] d)

1 [□ + 2□ − □2]
2 2
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18. If A has eigen values (1,2) then the eigen values of 3A+4A-1 are 

a) 3, 8 b) 7, 11 c) 7, 8 d) 3, 6

[ ]

2

3 4
19. If A = [1 ] □ℎ□□ □3 = [ ]

a) 2A2+5A b) 4A2+5A c) 2A2+4A d) 5A2+2A

20. If D = P-1AP then A2 =

a) PDP-1 b) P2D2(P-1)2 c) (P-1)2D2 (p2) d) PD2P-1

[ ]

1 1 3
21. The product of Eigen values of A = [1 5 1] □□ [ ]

3 1 1
a) 18 b) -18 c) 36 d) -36

22. If one of the eigen values of A is zero then A is [ ]

a) Singular b) Non-Singular c) Symmetric d) Non-Symmetric

23. If A is a square matrix, D is a diagonal matrix whose elements are eigen values of A and P is the 

matrix whose Columns are eigen vectors of A4, then A4 = [ ]
a) PDP-1 b) PD4P-1 c) P-1D2P d) P-1D4P

×
24.

|□|
is an eigen value of
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[ ]

a) Adj A b) A.adj A c) (adj A) A d) None

3

−1 2
25. The characteristic equation of [ 1 ] is [ ]

a) ×2− 3 × +5 = 0

c) ×2+ 3 × −5 = 0

b) ×2+ 3 × +5 = 0

d) ×2− 3 × −5 = 0

26. If A = [5
4

1 2
] □ℎ□ eigen values of A are 6 and 1 then the model matrix is [ ]

a)
1 −1 1 −1

b) [3 c)
0
[
1 −1

d)
2
[
1 −1

[4 1 ] 1 ] 1 ] 1 ]

27. If A = [1
0 −3

0 ] then the model matrix is [ ]

0

0 1

28. a)
1 ]

[ b) [
−1 0 1 1

1 1 2 0
] c) [ ] d) [

1 1

0 −1
]

29. If A = [1
2 3

4
then the model matrix is

] [ ]

a)
1
[

−2 1 −2

1 1 −1 1
] b) [ ] c) [

1 2

1 1
] d) [

1 −2

−2 1
]

30. If A = [1
2 3

4
then the spectral matrix is

] [ ]

0a)
5 ]

[
4 0 3 0

0 1 0 1 0 1
b) [ ] c) [ ] d) [

5 0

0 −1
]

4 −3
30. If A = [3 4 ] then the spectral matrix is [ ]
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−5 0
a) [

0
] b) [

2 0 3 0 4 0

5 0 −2 0 −3 0 −4
] c) [ ] d) [ ]

31. If the eigen values of A are 0, 3, 15 then the index and signature of XTAX are  [ ]  

a) 2, 1 b) 2,2 c) 3,3 d) 1,1

1 1

32.If two eigen vectors of a symmetric matrix are [−1] □□□ [ 0 ] then the third eigen vector is

1 −1

1

−1

−1

1
i. a) [−1] b) [−2] c) [ 1 ] d) [2]

1 2 1 1

[ ]

33. Product of eigen values of matrix A is equal to [ ]

a) determinant of A b) Trace of A c) Principal diagonal of A d) None

34. If A and B are square matrices such that A is non-singular then A-1B and BA-1 have [ ]

a) different eigen values

c) reciprocal eigen values

b) same eigen values

d) None

5 0 0

35. The eigen values of [0 2 0] □□□
0 0 4

[ ]

a) 2, 4, 5 b) -2,-4,-5 c) 1,2,3 d) 3,4,6

[ ]

a) 12I

2 3 5

36. If A = [0 −4 7] then A3-12A =

0 0 2

b) 8I c) 10I d) 16I

4 2 337. If A = [5 ] then 6A -A +A =
1 2

a) 5I

[ ]

b) 10I c) 6I

then A3-4A2+A+6I =

d) 8I

−238. If A = [4 ]
1 1

[ ]

a) [0] b) I c) 3I d) 5I

1

39. If A = [4 −2
and × = 2 𝑎□□ 3 then the modal matrix is

1
] [ ]

2

1 1

a)
1 ]

[ b) [
1 1

−1 1
] c) [

−2 1

1 1
] d) [

1 1

−1 1
]

1 2
]40. If A = [5 4

then D = [ ]

0

0 5
(a) [2 ] b) [

3 0

0 4

6 0

0 1
] c) [ ] d) [

6 0

0 7
]



2 2
]41. If A = [1 3

then D = [ ]

0

0 2

a)
1 ]

[ b) [
4 0

0 −1
] c) [

5 0

0 −2
] d) [

3 0

0 0
]

42. If is an eigen value of A then is eigen value of [ ]

a) A b) A-1 c) Am d) A-m

43. If A = then the eigen values of A2 are

b) 1, -3, 2 c) 1, 3, -2 d) 1, 9, 4

[ ]

a) -1, -9, -4

44. If is the eigen value of A then the eigen values of A-1 are [ ]

a) b) c) - d)

45. If the eigen values of A are 1, 3, 0 then =  

a) 4 b) 1 c) 3 d) 0

[ ]

46. The characteristic equation of [ ]

a)

c)

b)

d)

47. If A = [ ]

a) b) c) d)

48. If A = the eigen values of A are (2, 2, -2) then p-1A3P = [ ]

a) b) c) d)

49. If the eigen values of a matrix are (-2, 3, 6) and the corresponding eigen vectors are

then the spectral matrix is [ ]

a) b)

c) d)
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50. If the eigen values of a matrix are (-2, 3, 6) and the corresponding eigen vectors are

then the spectral matrix is [ ]

a) b)

c) d)

Unit-II Eigen values and Eigen Vectors
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[KEY]

1 c 11 d 21 d 31 b 41 b
2 d 12 d 22 a 32 d 42 c

3 b 13 b 23 b 33 a 43 d

4 c 14 d 24 a 34 b 44 b

5 a 15 b 25 a 35 a 45 d

6 d 16 d 26 a 36 d 46 b

7 a 17 c 27 a 37 c 47 c

8 d 18 c 28 a 38 a 48 d

9 a 19 d 29 d 39 a 49 a

10 d 20 d 30 a 40 c 50 b
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UNIT - IV



CALCULUS
INTRODUCTION

Let y=f(x) be a function continuous in the closed internal [a,b]. This means that if 

a < c < b ,

lim f(x) = f(c) and
𝑥→𝑐

lim f(x) = f(a),
𝑥→𝑎+0

lim f(x) = f(b)
𝑥→𝑏−0

Let y = f(x) be differentiable in the closed interval [ a,b]. This means that if a < c < b , the derivative of 

f(x) at x = c exists.

i.e., lim f(X)− f(c)

𝑥→𝑐 𝑥−𝑐
exists

f(X)− f(a)

𝑥−𝑎
Further lim and

𝑥→𝑎+0
lim

𝑥→𝑏−0 𝑥−𝑏

f(X)− f(b)  
exists.

Geometrically, if f(x) in a continuous function in the closed interval [a,b], the graph of y=f(x) is a

continuous curve for the points x in [a,b]. If f(x) is derived in closed [a,b], there exists a unique

tangent to the curve at every point in the interval [a,b]. This is shown in the following figures (1), (2), &

(3).

a 0 b 0 a b a b

fig (1) fig (2) fig(3)

Mean Value Theorems 

I ) Rolle’s Theorem

Statement : Let f(x) be a function such that

i) It is continuous in closed interval [a,b]

ii) It is differentiable in open interval [a,b] and

iii) f(a) = f(b)

Then there exists at least one point c in open interval (a,b) such that f1(c)= 0

Geometric interpretation of Roll’s theorem

Consider the portion AB of the curve y=f(x), lying between x = a and x = b such that

i) It goes continuously from A to B

ii) It has a tangent at every point between A and B, and

iii) Ordinate of A = ordinate of B

1
3
0



Y

C C2

A

C1

B

x =b

0 fig (1)

From the above fig(1), it is self evident that there is at least one point c (may be more) of the curve at 

which the tangent is parallel to the x – axis.

i.e. slope of the tangent at c (x = c) = 0. But the slope of the tangent at c is the value of the 

different co-efficient of f(x) with respect to x, therefore f1(c)= 0.

Hence the theorem is proved.

𝑒𝑥
Eg : 1) Verify Rolle’s theorem for the function f(x) =

sinx 
or e-x sin x in [o,π]

Solution : given f(x) =
sinx

𝑒𝑥

We know that every polynomial is continuous in [a,b] so that sin x & e-x are also

continuous function is [0,π]

i)

 sinx

𝑒𝑥
is also continuous in [o,π]

ii) Since sin x and ex are derivable in [0,π]

 sinx

𝑒𝑥
is also continuous in [o,π]

iii) F(o) =
sin o

= o and f(π) =
sin  

=0
𝑒𝑥 𝑒𝑥

 f(o) =f(π)

Thus all the three conditions of Roll’s theorem are satisfied.

 there exists c∈ (a,b) such that f1(c) = 0

( c-a)m-1 (c – b )n-1 [(m+n) c – (mb+na)] = 0

 (m+n) c – (mb+na) = 0

 (m+n) c – mb+na

𝑚+𝑛
 c =

mb+na
E (a,b)

[ since the point c ∈ (a,b) divides a and b internally in the ratio m:n]

 Roll’s theorem is verified.

1
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𝑥(𝑎+𝑏
)

X2 +ab
(3) verify Rolle’s theorem for the function log[ ] in [a,b], a > o , b > o

Solution : let f(x) = log
𝑥2−𝑎𝑏

𝑥(𝑥2−𝑎𝑏)
,

= log (x2 +ab) – log x (a+b)

= log (x2 +ab) – log x – log x(a+b)

Since f(x) is a composite function of continuous functions in [a,b], it is continuous in [a,b].i)

ii) f1(x) =
1 𝑥2−𝑎𝑏

𝑥2+𝑎𝑏 𝑥 𝑥(𝑥2+𝑎𝑏)
2x -

1
= , which exists  x∈ (a,b)

 f(x) is derivable in (a,b)

𝑎2−𝑎𝑏)

2

iii) f(a) = log[ 𝑎 +𝑎𝑏
] = log1 = 0

2

f(b) = log [ 𝑏 +𝑎𝑏
] = log1 = 0

𝑎2+𝑎𝑏)

 f(x) = f(b)

Thus f(x) satisfies all the three conditions of Rolle’s theorem.

there exists c∈ (a,b) such that f1(c) =0

i.e.,
𝑐2−𝑎𝑏

𝐶 (𝑐2+𝑎𝑏)
= 0

i.e., c2 – ab = 0 

i.e., c2 =ab

i.e., c = ± √𝑎𝑏

 c = √𝑎𝑏 ∈ (a,b) 

Hence Rolle’s theorem is verified.

(4) Using Rolle’s theorem, show that g(x) = gx3 – 6x2 – 2x +1 has a zero between 0 and 1. 

Solution:

1
3
2

i) since g(x) being a polynomial.

 it is continuous on [0,1]

since the derivative of g(x) exists for all x (0,1)

 it is derivable on (0,1) 

g(0)=1, and g(1) = 8-6-2+1=1

 g(0) =g(1)

ii)

iii)

Hence all the conditions of Rolle’s theorem are satisfied on [0,1]

Therefore , there exists a number c ∈ (0,1) such that 

g1(c) =0



Now g1(x) =24x2 – 12x -2

 g1(c ) = 0

i.e., 24c2 – 12c – 2 = 0

i.e., 12c2 – 6c – 1 = 0

i.e.,c =
3±√21

12

i.e. c = 0.63 or -0.132

Here clearly c = 0.63 ∈ (0.1)

Thus there exists at least one root between 0 & 1

5) Verify whether Rolle’s therorem can be applied to the following functions in the intervals cited :

i) f(x) = tan x in [0,π]

ii) f(x) =
1

in [-1, 1]
𝑥2

ii) f(x) = x3 in [1,3]

solution:

i) F(x) = tan x in [0,π] since f(x) is discontinuous at x = π/2 

Thus the condition (1) of Rolle’s theorem is not satisfied. 

Hence we can’t apply Rolle’s theorem here.

ii) f(x) =
1

in [-1, 1]
𝑥2

Here f(x) is discontinuous at x = 0 

Hence Rolle’s theorem can’t be applied. 

f(x) = x3 in [1,3]

Here clearly f(x) is continuous on [1,3] and derivable on (1,3) 

But f(1) G f(3)

i.e., condition (3) of Rolle’s theorem fails

Hence we can’t apply Rolle’s theorem for f(x) = x3 in [1,3]

iii)

Exercise : (A)

I) verify Rolle’s theorem for the following functions in the intervals indicated. 

i) x2 in [-1,1] ii) x(x+3) e-x/2 in [-3,0]

2

iii) x2/3 – 2x1/3 in (0,8) iv)
𝑥 −𝑥−6 

in (-2,3)

1
3
3

𝑥−1

v) x2 -2x-3 in (1,-3) vi) |x| in [-1,1]



answers : i) c =0

v) c =1

ii) c = -2

vi) not applicable.

iii) c = 1 iv) not applicable

II) Langrange’s means value theorem :- (LMVT)

Statement: let f(x) be a function such that

i)

ii)

It is continuous is closed interval [a,b] and 

Differentiable in open interval [a,b]

Then there exists at least one point of x say c in open interval (a,b) i.e. a < c < b such that 

f1 (c) = ƒ
(𝑏)− ƒ(𝑎)

𝑏−𝑎

Note : Langrange’s mean value theorem is also known as first mean value theorem of differential 

calculus.

Geometric interpretation of Lagrange’s mean value theorem

Let A,B be the points on the curve y = f(x) corresponding to x = a and x=b so that A = [a,f(a)] and 

B=[b,f(b)], shown in figure (i)&(ii) below.

Y y C3

C C1

B C2

A

0 x x

Fig(i) fig(ii)

 slope of chord AB =
ƒ(𝑏) − ƒ(𝑎)

𝑏−𝑎

By lagranges mean value theorem, the slope of the chord AB = f1(c), the slope of the tangent of the 

curve at c(x=c)

Hence the lagrange’s mean value theorem asserts that if a curve AB has a tangent at each of its 

points, then there exists at least one point C on this curve, the tangent at which is parallel to the chord

AB.

Another form of Lagrange’s mean value theorem

Let f(x) be a function such that

i) It is contiunuous in the closed interval [a,a+b],

ii) f1(x) exists in the open interval (a,a+b)

Then there exists at least one number  (0 <  < 1)

1
3
4



such that f(a+b) = f(a) +hf1(a+b)

Solved examples

Eg (1) : Verify Lagrange’s mean value theorem for 

f(x) = x3-x2-5x+3 in [0,4]

solution :

Since f(x) is a polynomial so that it is continuous and derivable for every value of x.

In particular, f(x) is continuous in closed interval [0,4] and derivable in open interval (0,4).

Hence by Lagange’s mean value theorem, there exists a point c in open interval (0,4) such that 

f1(c) =  ƒ
(4)− ƒ(0)

4−0

4
i.e., 3c2 – 2c – 5 =

ƒ(4)− ƒ(0)
------- (1) (  f1(x) = 3x2 -2x-5)

Here f(4) = 43-42-5(4)+3 = 64-16-20+3=31

and f(0) = 3

from (1), we have 3c2-2c-5 =7

=3c2-2c-12=0

 c=2±√4+144 = 2±√148 = 1±√37 

6 6 3

Here clearly c = 
1±√37 c (0,4)

3

2) Verify lagrage’s mean value theorem for f(x)=logex in [1,e]

Solution: given f(x) = logex f1(x) =
1

𝑥

Since f(x) is a polynomial so that it is continuous in [1,e] and derivable in [1,e]

 By lagrage’s mean value theorem, there exists a point c c (1,e) such that

f1(c ) = ƒ(𝑒)−ƒ(1) = 1−0 = 1

𝑒−1 𝑒−1 𝑒−1
--- (1)

but f1(c ) =
1

𝐶

1 = 1

𝐶 𝑒−1

 c = e -1 c (1,e)

Hence lagrange’s mean value theorem is verified.

3) State whether langrange’s mean value theorem can be applied to the following function in the 

interval indicated justify your answer.

F(x) = x3/4 in [-1,1]

Solution :

1
3
5



Given f(x) = x1/3

Clearly f(x) is continuous in closed interval[-1,1]

3 3
But f1(x) =

1
x

1
-1 =

1

3𝑥2/3
is not derivable at x = 0.

Hence it is not derivable in open interval (-1,1)

Hence we can’t apply lagrange’s mean value theorem.

Exercise : (B)

1) Verify lagrange’s mean value theorem for the following functions in the intervals indicated.

i) Cos x in [0,π/2] ii) |x| in [-1,1]

iii)  x3-2x2 in [2,5] v) 2x2 – 7x+10; a-2, b=5

2) Find C of the lagrange’s theorem for

F(x) = (x-1) (x-2) (x-3) on [0,4] ans: C=
16±3

3

State whether LMVT can be applicable for the function3)

𝑥
F(x) =

1
in [-1,1] ans: not applicable

Eg:

1) If a < b , prove that
𝑏−𝑎

< tan-1 a <
𝑏−𝑎

1+𝑏2 1+𝑎2
using lagrange’s mean value theorem reduce the

following

i)
𝜋 + 3

< tan-1 4
<

𝜋
+

1

4    25 3 4 6

ii)
5𝜋+4 < tan-12 < 𝜋+2

20 4

Solution :

Consider f(x) = tan-1x in [a,b] for 0 < a < b < 1

Since f(x) is continuous in closed interval [a,b] and derivable in open interval[a,b] we can apply 

lagrange’s mean value theorem.

Hence exists a point c c (a,b) such that 

f1(x) = ƒ(𝑏)− ƒ(𝑎)

𝑏−𝑎

1
Hence f1(x) =

1+𝑥2

f1(c) =
1

1+𝑐2

Thus there exists a point c, a<c<b such that
−1 −1

1 = 𝑡𝑎𝑛 𝑏−𝑡𝑎𝑛 𝑎

1+𝑐2 𝑏−𝑎

We have a < c < b

1
3
6

------- (1)



1+a2 < 1+c2 < 1+b2 -------- (2)

1 1
> >

1

1+𝑎2 1+𝑐2 1+𝑏2

Using 1) and 2), we have
−1 −1

1 > 𝑡𝑎𝑛 𝑏−𝑡𝑎𝑛 𝑎

1+𝑎2 𝑏−𝑎
>

1

1+𝑏2

1+𝑏2 1+𝑎2
or

𝑏−𝑎
< tan-1b – tan-1a <

𝑏−𝑎
------- (3)

Hence the result.

Deduction:

i) We have
𝑏−

1+𝑏2
< tan-1b – tan-1a <

𝑏−𝑎

1+𝑎2
---- (4)

3
Put b =

4
, a=1, we get

4−1

1+
9

4

3

-1 -1= 3
16 < tan  ( ) - tan (1) < 3

4−1

1+12



4−3

3 
25

9

-1 4 𝜋
< tan ( ) - <

4−3

3

3 4 2


3

+
𝜋

< tan-1 (
4
) <

𝜋
+

1 

25 4 3 4 6

ii) Put b=2 and a=1 in (4), we get

1+22

2−1 
< tan-1(2) – tan-1(1) <

2−1

1+22


1

< tan-1(2) – π/4 >
1 

5 2


1

+
𝜋

< tan-1(2) <
𝜋

+
1 

5 4 4 2

or
4+5𝜋

< tan-1(2) <
2+𝜋

20 4

6 √
5 3 4 6 8

2) Prove that 
𝜋

+
1 

< sin-1 3
<

𝜋
+

1
using langrange’s mean value theorem.

Solution : let f(x) = sin-1(x), which is continuous and differentiable .

Now f1(x) = -- f1(c ) =
1 1

√1−𝑥2 √1−𝑐2

By Langrange’s mean value theorem, there exist c c (a,b) such that a < c<b and 

f1(c ) = ƒ(𝑏)− ƒ(𝑎)

𝑏−𝑎

i.e,

−1 −1
1 = 𝑠i𝑛 𝑏−𝑠i𝑛 𝑎

√1−𝑐2 𝑏−𝑎
----- (1)

1
3
7

We have a < c < b



Then a2 < c2 < b2

 1-a2 > 1-c2 > 1-b2

 √1 − 𝑎2 > √1 − 𝑐2 > √1 − 𝑏2


1 1

> >
√1−𝑎2 √1−𝑐2 √1−𝑏2

1



−1 −1
1 < 𝑠i𝑛 𝑏−𝑠i𝑛 𝑎

√1−𝑎2 𝑏−𝑎

𝑏−𝑎

<
1

√1−𝑏2


1+𝑎2

< sin-1b – sin-1a <
𝑏−𝑎

1+𝑏2

Put a =1/2 and b =3/5

3−1

 5  2

√1−1
4

< sin -13

4
- sin -1 1

2

3−1

< 5 2

4
√1−( )

1 2


2

10√3
< sin-13 - 𝜋 < 1

4 6    
8

𝜋 + 1

6   5√3
< sin-13 <𝜋 + 1

5 6 8

3) Prove using mean value theorem | sin u- sinv | ≤ | u – v|

Solution : if u = v , there , is nothing to prove.

If u > v , then consider the function

F(u) = sin u on [v,u]

Clearly, f is continuous on [v,u] and derivable on(v,u)

 By Lagrange’s mean valve theorem, there exists c c (v,u)

𝑢−𝑣
Such that

ƒ(𝑢)− ƒ(𝑣)  
= f1 (c )

sin 𝑢– 𝑠i 𝑛 g
𝑣 𝑢−𝑣

= cos c

But | cos c| ≤ 1

 | sin 𝑢– 𝑠i 𝑛 g 𝑣 | ≤ 1
𝑢−𝑣

If v > u, then in similar manner, we have

|sin v – sin u| ≤ | v – u|

| sin u – sun v| ≤ | u – v | [ |x| = |x|] 

Hence for all u, v E R

| sin u – sun v| ≤ | u – v |

4) show that for any x> 0 , 1+x < ex < 1+ex

1
3
8



Solution:

Let f(x) = ex defined on [0,x] and derivable on (0,x)

 By Lagrange’s mean value theorem 

There exists a number c c (0,x) such that

ƒ(𝑥)− ƒ(𝑜) =f1(c )
𝑥−𝑜

𝑒𝑥− 𝑒𝑜 = ec

𝑥

𝑒𝑥− 1
= ec ------ (1)

𝑥

Now c (o,x) i.e., 0 < c < x

eo < ec < ex

𝑥

1 <
𝑒 − 1

< ex < from (1)>
𝑥

x < ex – 1 < xex 

1+x < ex < 1+xex

Exercise : (C)

√𝑥
1) Find c of cauchys mean value theorem for f(x) = √3 and g(x) =

1 
in [a,b]

F1(x) =

Solutions :

Clearly f, g are continuous on [a,b]

We have f(x) = √𝑥

1

And g(x) =

2√𝑥

1

√𝑥

g1(x) = -
1

2𝑥√𝑥
, which exists on (a,b)

√𝑏−√
=

 f,g are differentiable on (a,b) 

Also g1(x)  0  x (a,b) CR+

 conditions of cauchys mean value theorem are satisfied on (a,b)

 there exists c c (a,b) such that

ƒ(𝑏)−ƒ(𝑎) = ƒ1 (𝑐)

g(𝑏)−ƒ(𝑎) g1(𝑐)

1

2√𝑐
1 − 1 1

√𝑏 −√

√𝑎𝑏

√𝑏 √𝑎 2𝑐√𝑐

√𝑏−√𝑎 = 2𝑐√𝑐

√𝑐

1
3
9



√𝑎𝑏 (√𝑏−√𝑎) = c
√𝑏−√𝑎

√𝑎𝑏 = 𝑐

Clearly c = √𝑎𝑏 c (a,b)

Hence Cauchy mean value theorem is verified.

2) Find c of Cauchy mean value theorem on [a,b] for 

f(x) = ex and g(x) = ex (a,b > o)

solution :

given (x) = ex and g(x) = e-x

clearly f, g are continuous on[a,b] and f,g are differentiable on (a,b) 

also g1(x) = - e-x  0  x  (a,b) such that

ƒ(𝑏)−ƒ(𝑎) = ƒ1 (𝑐)

g(𝑏)−ƒ(𝑎) g1(𝑐)

𝑒𝑏− 𝑒𝑎
=

𝑒−𝑏 −𝑒−𝑎 − 𝑒−𝑐

𝑒𝑐

𝑒𝑏− 𝑒𝑎

𝑒𝑏 𝑒𝑎

1 1
− −

= -e2c

𝑒𝑏− 𝑒𝑎

𝑒𝑎 − 𝑒𝑏

𝑒𝑎− 𝑒𝑏

= - e2c

𝑒𝑏− 𝑒𝑎

𝑒𝑎 − 𝑒𝑏

𝑒𝑎+𝑏

= - e2c

𝑒𝑎+𝑏( 𝑒𝑏−𝑒𝑎)

−(𝑒𝑏−𝑒𝑎)

ea+b = e2c

a+b = 2c

= - e2c

C =
𝑎+𝑏 c (a,b)

2

Hence LMVT is verified

Exercise :(D)

1) Verify cauchy mean value theorem for the following

𝑥2
i) f(x) =

1
, g(x) =

1
on [a,b] ans: c =

2𝑎𝑏

𝑥 𝑎+𝑏

2
ii) f(x) = sin x , g(x) = cos x on [o,

𝜋
ans : c = π/4

iii) f(x) = log x and g(x) = x2 in [a,b], b>a>1 show that
𝑙𝑜g𝑏−𝑙𝑜g𝑎

=
𝑎+𝑏

𝑏−𝑎 2𝑐2

iv) f(x) = x2 , g(x) = x3 in [1,2] ans : c =
14

9

Taylor’s theorem

1
4
0



Statement: If f : [a,b] →R is such that

i) fn-1 is continuous on [a,b]

ii) fn-1is derivable on (a,b) or f(n) exists on (a,b) then there exists a point c c (a,b) such that

2 𝑛−1

f(b) = f(a) +
𝑏−𝑎

f1(a) +
(𝑏−𝑎)  

f1(a) + ---+
(𝑏−𝑎)

fn-1 (a)+R
1! 2! 𝑛−1

n

i) Scholmitch – Roche’s form of remainder:

nR =
(𝑏−𝑎)𝑝(𝑏−𝑐)𝑛−𝑝ƒ𝑛(𝑐)

𝑃(𝑛−1)!
------ (1)

ii) Lagrange’s form of remainder : put p=1, in (1) we get

nR =
(𝑏−𝑎)𝑛ƒ𝑛(𝑐)

𝑛 !

iii)

nR =

Cauchy’s form remainder : put p=1 in (1), we get

𝑛−1 𝑛(𝑏−𝑎)  (𝑏−𝑐) ƒ (𝑐)

(𝑛−1)!

Note :

x =a

2!

2

(x) = f(a) +(x-a) f1(a) +
(𝑥−𝑎) 

f11 (a)+------- is called Taylor’s series for f(x) about

Machlaurin’s theorem

Statement: If f:[0,x] →R is such that

i) fn-1 is continuous on [0,x]

ii) fn-1 is derivable on(0,x) then there exists a real number  c (0,1) such that

2

f(x) = f(0) +x f1(0) + 
𝑥

f”(0) + -------- +xn-1 f(n-1)(0) +Rn2!

Roche’s form of remainder:i)

nR =
𝑥 (1−𝑛 𝑛−𝑝 𝑛) ƒ (𝑥)

𝑝(𝑛−1)!
--------- (1)

ii)

n
𝑥

Langrange’s form remainder : put p=n in (1)

𝑛

𝑛 !

nWe get R = f (x)

iii) Cauchys form of remainder : put p=1 in (1)

nWe get R =
𝑛𝑥 (1− 𝑛−𝑝 𝑛) ƒ (𝑥)

(𝑛−1)!

2! 𝑛 !

2 𝑛

Note : f(x) = f(0) + xf1(0) +
𝑥

f””(0)+-----+
𝑥

fn(0) +--- is called maclaurin’s series expansion of f(x).

1
4
1

Solved examples

1) Obtain Taylor’s series expansion of f(x) = ex in powers of x+1

Or



Obtain the talylor’s series expansion of ex about x = -1.

Solution : let f(x) = ex about x = -1 

Here a = -1

 f(x) = ex f1(x) = ex f1(a) = e-1 

f"(x) =ex ----- f”(a) = e-1

We know that the Talylor’s series expansion of f(x) about x =a is

2

f(x) = f(a) + (x-a) f1(a) +
(𝑥−𝑎) 

f11(a) +-------- (1)
2!

put f(x) = ex & a=-1 in (1) , we get

2!

2

ex = f(-1) + (x+1) f1(-1) +
(𝑥+1) 

f11 (-1) + ------

2!

2

ex = e-1 + (x+1) e-1 +
(𝑥+2) 

+ ------

2!

2

ex = e-1 [ 1+ (x+1) + 
(𝑥+2)

+ ------] is the required Taylor’s series expansion about x =-1

−1 3

2) Show that
𝑠i𝑛 𝑥

= x+4
𝑥

+ ------
√1−𝑥2 3!

−1

Let f(x) =
𝑠i𝑛 𝑥

then f(0) = 0
√1−𝑥2

√1 − 𝑥2 f(x) = sin-1x ------ (1)

Differentiating (1) w.r.t. x, we get

√1 − 𝑥2 f1(x) +f(x) ( ) =
−2𝑥 1

2√1−𝑥2 √1−𝑥2

(1-x2) f1(x) - xf(x) = 1 -------------(2) 

Now f1(0) = 1

Differentiate (2) w.r.t. x, we get

(1-x2) f11(x) + f1(x) (-2x) –xf1(x) – f(x) = 0 ------

(3) (1-x2) f11(x) – 3xf1(x) – f(x) = 0

Then f11(0) = 0 

Differentiate (3) w.r.t. x, we get

(1-x2) f111(x) – 2x f11(x) – 3f1(x) -3xf11(x) – f1(x) = 0 

(1-x2) f111(x) -5xf11(x) – 4f1(x) = 0

f111(o) – 4f1(o) = 0

f111(o) = 4 ( f1(0) =1)

Similarly fIV(O) = 0

We have by Taylor’s theorem,

11 111

2! 3! 4!

2 3 4

F(x) = f(o)+1.x+
𝑥

f (o) +
𝑥

f (o) +
𝑥

fiv(0)+----

1
4
2



𝑥3

√1−𝑥2 2! 3!

𝑥4

4!

11 111 iv𝑠i𝑛−1𝑥
= 0 +1.x + 

𝑥2
f (o) + f (o) + f (0)+----

𝑥3

3!
= x + 4 + -----

2 8 192
3) Show that log(1+ex) = log2 +

𝑥
+

𝑥2
-

𝑥 24
+ ----- and hence reduce that

𝑥+1 2 4 48

𝑒 2   
=

1  
+ 

𝑥
-
𝑥 𝑏

+ ------

Solution : let f(x) = log(1+ex) then f(0) = log2

Differentiate successively w.r.t. x, w get

𝑒

1+𝑒𝑥

𝑥
f1(x) =  f1(0) =

1   = 1

𝑥 𝑥 𝑥 𝑥

f11(x) = (1+𝑒 )𝑒 − 𝑒 𝑒 =

1+1 2

𝑒𝑥

(1+𝑒𝑥)2 (1+𝑒𝑥)2

𝑥 2  𝑥 𝑥 𝑥 𝑥

f111(X) = (1+𝑒 ) 𝑒 − 2𝑒 (1−𝑒 )𝑒

 f1(o) =
1 = 1

(1+1)2 4

(1+𝑒𝑥)4

𝑥 𝑥 𝑥 2𝑥 2𝑥

=
(1− 𝑒 )𝑒 [ 𝑒 + 𝑒 −2𝑒 ]

(1+𝑒𝑥)4

𝑥 2𝑥

= 𝑒 −𝑒

(1+𝑒𝑥)3

 f111(o) = 0

(1+𝑒𝑥)3(𝑒𝑥−2𝑒2𝑥)− ( 𝑒𝑥− 𝑒2𝑥) 3(1+𝑒𝑥)2𝑒𝑥

(1+𝑒𝑥)6

=
(1+𝑒 𝑥 )(𝑒 𝑥 −2𝑒2𝑥 )− 3𝑒 𝑥 (1−1)    = 2 = 1  

(1−1)4 16 8

Substituting the values of  f(o), fII(o), ---------------in the maclaurin’s series

2 3

f(x) = f(0) + xf1(0) +
𝑥

f11(o) +
𝑥

f111 (o) + ------
2! 3!

We get log(1+ex ) = log2 +x(
1 1𝑥2 𝑥3

2 2!   4 3! 4! 8

4

)  + ( )  + (o) +
𝑥

(-
1

) + ----

2 8 192

2 4

log(1+ex) = log2 +
𝑥

+
𝑥

-
𝑥

+ ----------------(1)

Deduction :

Differentiating the result given by (1) w.r.t x,

We get

3
1 ex = 1 + 2𝑥 - 𝑥

1+𝑒2 2 8 48
+ -------------

1
4
3

4) Verify Taylor’s theorem for f(x) = (1-x)5/2 with lagrange’s form of remainder upto 2 terms in the 

interval [0,1].

Solution: consider f(x) = (1-x)5/2 in [0,1]

i) f(x), f1(x) are continuous in [0,1]

ii) fII(x) is differentiable in (0,1)

Thus f(x) satisfies the conditions of Taylor’s theorem.



We consider Taylor’s theorem with Lagrange’s form of   remainder

2

f(x) = f(o) +xf1(o) +
𝑥

f11(o) with 0< < 1 ---- (1)
2!

Here n =p=2, a=0, and x =1 

f(x) = (1-x)5/2 then f(0) = 1

2
f1(x)=

5
(1-x)3/2 then f1(0)= - 5/2

4
fII(x) =

15
(1-x)1/2 then fII(x) =

15
(1-x)1/2

4

(1-)1/2i.e., fII() =
15

4

and f(1) = 0

2

From (1), we have f(x) = f (0)+xf1(0) +
𝑥

f11(x)
2!

Substituting the above values, we get

25
 =

9
= 0.36

  lies between 0 and 1.

Thus Taylor’s theorem is verified.

5) Obtain the Maclaurins series expression of the following functions.

ex
i) ii) sin x iii) loge(1+x)

solutions:

i) let f(x) = ex then

f1(x) = f11(x) = f111(x) = ------- =ex

 f(0) = fI(0) = f11(0) = f111(0) ------- =e0 = 1

The Maclaurins series expression of f(x) is given by

2 𝑛

f(x) = f(0) +xfI(0) +
𝑥

f11(0) + ------ +
𝑥

fn(0) +-------
2! 𝑛!

2 3 𝑛

i.e., ex = 1+
𝑥

+ 
𝑥

+
𝑥

+ ------ +
𝑥

+ -----
1! 2! 3! 𝑛!

ii) let f(x) = sinx then f(0) = sin0 = 0

Then fI(x) = cos x → fI(0) = cos 0 = 1 

f11(x) = - sin x →f11(0) = - sin0=0 

f111(x) = - cos x →f111(0) = - cos 0=-1 

fIV(x) = sinx →f1v(0) = sin 0=0

substituting all these values in maclarins series of f(x) given by ,

1
4
4



2

f(x) = f(0) +xfI(0) +
𝑥

2!

3

f11(0) +
𝑥

3!

𝑥4

4!

111 ivf (0) + f (0) +-----

2 3

sin x = 0 + x(1) +
𝑥

(0) + 
𝑥

2! 3!

𝑥4

4!
(-1) + (0) +-----

3!

3

sin x = x -
𝑥

+ --------

iii) let f(x) = loge (1+x)

fI(x) =
1

→ f1(0) = = 1

fII(x) =

1

1+𝑥

1

1+0

→ f11(0) =
1

= 1

fIII(x) =

(1+𝑥)2  

2
→f111(0) =

(1+0)2

2
= 2

fIV(x) =

(1+𝑥)3

−6

(1+0)3

−6

(1+𝑥)4 (1+0)4
→ fIV(0) = = -6

substituting all these values in maclurins series expansion of f(x) given by,

2 3

f(x) = f(0) + xfI(0) +
𝑥

f11(0) +
𝑥

2! 3!

𝑥4

4!

111 ivf (0) + f (0) +-----

2 3 4

we get , log(1-x) = 0+x(1) +
𝑥

-1 + 
𝑥

(2) +
𝑥

(-6) + ------
2! 3! 4!

2 3 4

2 3 4

log(1+x) = x -
𝑥

+
𝑥

-
𝑥

+------

Exercise: (E)

1) Obtain the maclaurins series for the following functions.

i) Cos x ii) sin x iii) (1-x)n

2) Obtain the Taylor’s series expansion of sinx in powers of x -
𝜋

4

3) Write Taylor’s series for f(x) = (1-x)5/2 with lagrange’s form of remainder upto 3 terms in the 

interval [0,1].

1
4
5

Applications of definite integral’s 

Definite integral:

Definition

Given a function f(x) that is continuous on the interval [a,b] we divide the interval into n

sub intervals of equal width x and from each interval choose a point , xi
*. Then the definite integral of 

f(x) a to b is



𝑎

𝑏
∫ ƒ(𝑥)𝑑𝑥 = lim ∑𝑛

𝑛→∞ i=1 f(xi
*) x

The integration procedure helps us in evaluating length of plane curves, volume of solids of

revolutions, surface area of solids of revolution, determination of centre of mass of a plane mass

distribution etc.,

Surface areas of Revolution:

Equation of curve Axis of revolution Surface area

Cartesion form:

i) Y = f(x)

ii) X= f(y)

X

–

a

x

i

s 

Y

–

a

x

i

s

S = 2π∫
𝑏 𝑦√1 + (𝑑𝑦)2 dx

𝑎 𝑑𝑥

S= 2π∫
𝑑 𝑦√1 + (𝑑𝑦)2 dy

𝑐 𝑑𝑥

Solved examples

1) Find the area of the surface of the revolution generated by revolving about the 

x – axis of the arc of the parabola y2=12x from x =0 to x=3

Solution: given y2 = 12x

y =2√3 √𝑥

𝑑𝑥

𝑑𝑦
=2√3

1

2√𝑥
= √

3

𝑥

 Surface area = 2π∫
𝑏
𝑦√1 + (

𝑑𝑦
)2 dx

𝑎 𝑑𝑥

= 2π ∫
3 2√3 √𝑥 √1 + 3

dx
0 𝑥

= 4π√3 ∫
3

√𝑥 √1 + 𝑥+3
dx

0 𝑥

13
= 4π√3 ∫0 (1 + 𝑥)2 𝑑𝑥

= 4π√3
3/2

3/2

[𝑥+3 ]

3
=

8 √3 
[(6)3/2 – (3)3/2]

= 8

√3
(3)3/2 [ (2)3/2 – 1]

= 24π [2√2 - 1]

2) Find the area of the surface of revolution generates by revolving one area of the curve y=sinx 

about the x – axis .

Solution: given curve is y = sin x

1
4
6



Here x varies from 0 to π/2


𝑑𝑦

= cos x
𝑑𝑥

Hence required surface area

𝜋/2
= 2π ∫0 𝑦 √

𝑑𝑦 21 + ( ) dx
𝑑𝑥

0
= 2π ∫

𝜋/2
sin𝑥 √1 + 𝑐𝑜𝑠2𝑥 dx

0
= 2π ∫

1
√1 + 𝑡2   dt (putting cos x = t)

2 2 0

1

= 2π [𝑡 √1 + 𝑡2  + 1 sinh−1 t ]

= 2π
1

√2 +
1

sin h-1 (1) – 0-0]
2 2

= π [√2 + sin h-1(1) ]

3) The area of the curve x = y3 between y =0 and y=2 is revolved about y-axis. Find the area of 

surface so generated.

Solution : given curve is x = y3

𝑑𝑦
Then

𝑑𝑥
= 3y2

 required surface area = 2π∫
2
𝑥 √1 + (𝑑𝑥)2   dy

0 𝑑𝑦

0
= 2π∫

2
𝑦3 √1 + (3𝑦2)2 dy

0
= 2π∫

2
𝑦3 √1 + 9𝑦4 dy

= 2π ∫
145 √𝑡 𝑑𝑡 (putting 1+9y4=t)

1 36

18 3
= [ 𝑡

𝜋 2 3/ 2]
1

145

= 𝜋

27
[(145)3/2 – 1]

Exercise: (F)

𝑐
1) Find the surface area generated by the revolution of an arc of the catenary y=C cos h

𝑥
about x –

axis   ans : π c2[1+
sin ℎ2

2

2) Find the area of the surface of revolution generated by revolving the arc of the curve a2 y=x3 from x

=0 to x =a about the x –axis ans:
𝜋

[10√10 -1]

1
4
7

27

3) Find the surface area of s phere of radius ‘a’ ans: 4πa2

Volumes of solids of revolution:



Region Volume of solid generated

Castesion form

i) y=f(x) the x – axis and the

lines x

=a , x=b

V

=

π

∫

𝑦
2

d

x
𝑎

ii) x=g(y) the y – axis and the

lines

y=c, y=d

V

=

π

∫

2

d

y

iii) y =y1(x), y=y2 (x) the x –

axis and

ordinates x=a, x=b

V = π ∫
𝑏(𝑥2 − 𝑥2 ) dy

𝑎 2 1

Solved examples:

1) Find the volume of a sphere of radius ‘a’.

Solution :

Sphere is formed by the revolution of the area enclosed by a semi circle its diameter 

Equation to circle of radius ‘a’ is x2+y2 = a2 -------(1)

Then y2 = a2-x2

In semi circle ‘x’ varies from –a to a.

−𝑎
 Required volume = π ∫

𝑎
𝑦2 dx

−𝑎
= π ∫

𝑎
(𝑎2-𝑥2) dx

2 𝑥3

3
= π [a x - ]a

a

3

3

= π [ a3 -
𝑎

+ a3-
𝑎3

]
3

3

3

= π [2a2 -
2𝑎

]

3

=
4𝜋𝑎

cubic units

1
4
8

3

2) Find the volume of the solid that result when the region enclosed by the curve y=x3, y=0, y=1 is 

revolved about y – axis .

Solution :

Given curve is y =x3

Then x=y1/3

0
 Required volume = π ∫

1
𝑥2 dy

= π 1/3 21
∫0 (𝑦 ) dy



= [ ]
5/3 0

𝑦5/3 1

5
=

3𝜋
[ (1)5/3 -0]

=
3𝜋

cu. units
5

3) Find the area of the solid generated by revolving the arc of the parabola x2 =12y, bounded by its 

latusrectum about y – axis.

Solution:

Given parabola is

x 2 = 12y = 4(3)y (i.e x2 = 4ay) 

let ‘O’ be the vertex and LL1 be the latusrectum as shown in fig. 

for the arc OL, y varies from 0 to 3.

 Required volume = 2(volume generated by the revolution about the y – axis of the area OLC)

0
= 2π ∫

3
𝑥2 dy

0
=2π ∫

3(12)𝑦 dy

𝑦2

2 0

3

= 24π[ ] = 108π cubic units

𝑎2 𝑎2

2 2

4) Find the volume of the solid generated by revolving the ellipse
𝑥

+
𝑦

=1 (0 < b < a) about the

major axis.

Solution :

Given equation of the ellipse is

𝑥2
+
𝑦2

=1
𝑎2 𝑎2

When y =0, x = ± a

 major axis of the ellipse is x = -a to +a

(o,b)

(-a,o) (a,0)

(o,b)

 The volume of the solid generated by the given ellipse revolving about the major axis

−𝑎
= ∫

𝑎
𝜋𝑦2 dx

0
=2π ∫

𝑎
𝑦2 dx

𝑎20

2

= 2π ∫
𝑎

(𝑏2 −
𝑏 𝑥 2

) dy

𝑎2 3  0

2   3

= 2π [ b2x -
𝑏 𝑥 ]𝑎

𝑎2 3

2   3

= 2π [b2a -
𝑏 𝑎

- (0)]

1
4
9



3 3

2

= 2π [ ab2 -
𝑎𝑏

] =
4

πab2

Exercise :(G)

1) Find the volume got by the revolution of the area bounded by x – axis, the catenary

𝑎
y = a cosh (

𝑥
) about the x-axis between the ordinates x = ±a

2
Ans : πa3 (1+

1
sinh2)

𝑎2 𝑏2

2    2

2) Find the volume of the solid when ellipse
𝑥 𝑦

= 1, (o< b< a) rotates about minor axis

2

Ans: 4𝜋𝑎 𝑏

3

Beta and gamma functions:-

Definition of improper integral :-

Consider the integral∫
𝑏

ƒ(𝑥) such an integral for which i) either the interval of
𝑎

integration is not finite i.e a= -œ or b =œ or both ii) or the function f(x) is unbounded at one or more

points in [a,b] is called an improper integral.

Eg: ∫
∞

0

𝑑𝑥 𝑑𝑥 𝑑𝑥

1+𝑥4 −∞ 1+𝑥2 0 1−𝑥2

1
5
0

, ∫
∞

, ∫
1

etc..,

Beta function:

0
The definite integral ∫

1
𝑥𝑛−1 (1-x)n-1 dx is called the beta function and is denoted by B(m,n).

i.e., B(m,n) = ∫
1
𝑥𝑛−1 (1-x)n-1 dx , m>0, n>0

0

Note :  Beta function is also known as Eulerian integral of first kind, which converges for m>0, n>0

Properties of Beta function:

i) Beta function is symmetric i.e. B(m,,n) = B(n,m)

0
Proof: Since B(m,n) = ∫

1
𝑥𝑛−1 (1-x)n-1 dx --------- (1)

We know that ∫
𝑎

ƒ(𝑥) dx = ∫
𝑎

ƒ(𝑎 − 𝑥) dx (from properties of definite integral)
0 0

0
 B(m,n) = ∫

1
(1 − 𝑥)𝑛−1 [1-(1-x)]n-1 dx

0
= ∫

1
(1 − 𝑥)𝑛−1 xn-1 dx

= ∫
1
𝑥𝑛−1 (1-x)m-1 dx = B(n,m) from (1)

0

 B(m,n) = B(n,m)

ii)
0

B(m,n) = 2 ∫
𝜋/2

𝑠i𝑛2𝑚−1 cos2n-1 d

Proof:
0

We have B(m,n) = ∫
1
𝑥𝑛−1 (1-x)n-1 dx



Put x = sin2 so that dx = sin2 d

0

 B(m,n) = ∫
𝜋/2

𝑠i𝑛2𝜃)𝑚−1 (1-sin2)n-1 sin2 d
(

0
=∫

𝜋/2
𝑠i𝑛2𝑚−2 cos2n-2 (2sin cos) d

0
= 2∫

𝜋/2
𝑠i𝑛2𝑚−1 cos2n-1 d

Or ∫
𝜋/2

𝑠i𝑛2𝑚−1 cos2n-1 d =
1

B(m,n)
0 2

iii) B(m,n) = B(m+1,n) + B(m,n+1)

proof: By definition of Beta function, we have

B(m+1,n) + B(m,n+1) = ∫
1
𝑥𝑚 (1-x)n-1 dx + ∫

1
𝑥𝑚−1 (1-x)n dx

0 0

𝑚1 n-1 m-1 n

= ∫0 [𝑥 (1-x) +x (1-x) ] dx

0
= ∫

1 
𝑥𝑚−1 (1-x)n-1 [x+(1-x)] dx

= ∫
1 
𝑥𝑚−1 (1-x)n-1 dx = B(m,n).

0

Hence B(m,n) = B(m+1,n) + B(m,n+1).

Note : If m and n are positive integers, then B(m,n) =
(𝑚−1)!(𝑛−1)!

(𝑚+𝑛−1)!

Other forms of Beta function:

𝑥𝑚−1 𝑥𝑛−1

(1+𝑥)𝑚+𝑛
1) B(m,n) = ∫

∞
dx = ∫

∞

0  (1+𝑥)𝑚+𝑛 0
dx

2)
𝑚−1 𝑛−1

B(m,n) = ∫
1 𝑥 +𝑥

0  (1+𝑥)𝑚+𝑛
dx

3)
𝑥𝑚−1

(𝑎𝑥+𝑏)𝑚+𝑛
B(m,n) = am bn ∫

∞

0
dx

4)
1 𝑥𝑚−1+𝑥𝑛−1

∫0 (1+𝑥)𝑚+𝑛 dx =
𝐵(𝑚,𝑛)

𝑎𝑛(1+𝑎)𝑚

𝑎
5) ∫

𝑏
(𝑥 − 𝑏)𝑚−1 (a-x)n-1 dx = (a-b)m+n-1 B(m,n), m > 0, n>0

Solved examples:

1) Express the following integrals in terms of Beta functions

i)
1 𝑥

∫0√1−𝑥2 dx ii)
3    
𝑑𝑥

∫

1
5
1

0 √9−𝑥2



Solution :

i) Put x2=t

x= √𝑡 so that dx =
1

2√𝑡
dt

Limits : If x = 0 , t=0

and x =1,t = 1

 ∫
1

0 √1−𝑥2
dx = ∫

1𝑥 √𝑡 1

0 √1−𝑡 2√𝑡
dt

−1/2= 1 1∫ (1 − 𝑡) dt
2 0

=
1

∫
1
𝑡1−1(1 − 𝑡)1/2−1 dt = 

1 
B(1,

1 
) (by definition of Beta)

2 0 2 2

Put x2 =9tii)

x = √9𝑡 =3t1/2

dx =
3

t1/2-1 dt
2

Limits :  When x=0, t=0

x=3, t=1

𝑑𝑥 1
 ∫

3
= ∫

1

0 √9−𝑥2 0 √9−9𝑡 2

3 t1/2-1 dt

= 3 1∫ (9 − 9𝑡)
2 0

−1/2 1/2-1t dt

−1/2= 3 1∫ (9)
2 0

-1/2 1/2-1(1-t) t dt

1−13 1 1= ∫ 𝑡2

2 3 0
-1/2(1-t) dt

2 2 2
=

1
B(

1   
,

1
)

2) Evaluate
𝑥21

∫
0 √1−𝑥5

dx

Solution:
𝑥2

consider ∫
1

0 √1−25 0
dx = ∫

1
𝑥2 (1-25)-1/2 dx

Let x5 = t so that x = t1/5

5
and dx =

1
t1/5-1 dt

Upper and lower limits are

When x =1, t=1 

and x=0,t=0

𝑥2

0 √1−𝑥5 0
Now ∫

1
dx = ∫

1
𝑥2 (1−𝑥5)-1/2 dx

= ∫
1 
𝑡2/5 (1-t)-1/2 1 

t1/5-1 dt
0 2

1
5
2



3−11 1= ∫ 𝑡5

5 0
1/2-1(1-t) dt

5 5    
2

=
1

B(
3

,
1

)

Gamma function:

0
The definite integral ∫

∞
𝑒−𝑥 xn-1 dx, where in>0 is called gamma function and is denoted

by  (n)

i.e.,  (n) = ∫
∞
𝑒−𝑥 xn-1 dx

0

Note : Gamma function is also known as “Eulerian integral of Second kind”, which converges only for

n>0 and diverges if n 0

Properties of Gamma function:

0

i) (n)=1 (read as Gamma 1 = 1)

Proof: We have (n) = ∫
∞
𝑒−𝑥 xn-1 dx

0
 (1) = ∫

∞
𝑒−𝑥 x0 dx

= ∫
∞
𝑒−𝑥 dx = [-e-x] = - (0-1) = 1

0

(n) = (n-1)   (n-1) , where n>1ii)

Proof: by definition, we have

0 (−1) 0 0

−𝑥 −𝑥
(n) = ∫

∞
𝑒−𝑥 xn-1 dx = [ xn-1 𝑒

]∞ - ∫
∞ 
𝑛 − 1)𝑥𝑛−2(

𝑒
) dx

( −1

(using integration by parts)

=−𝐿𝑡
𝑥→0  𝑒𝑥 0

𝑥𝑛−1  
+ 0 + (n-1) ∫

∞
𝑒−𝑥 xn-2 dx

=(n-1) ∫
∞
𝑒−𝑥xn-1 dx

0

 (n) = (n-1) (n-1)

(  𝐿𝑡
𝑥→0 𝑒𝑥

𝑥𝑛−1 
=0 for n>1)

Note : 1)   (n+1) = n   (n)

2) If n is a positive fraction, then we can write

(n) = (n-1) (n-2) ----- (n-r) (n-r) where (n-r) > 0

3) if n is a non negative integer, then (n+1) = n!

An important relation between Beta and Gamma functions:

B(m,n) =
(𝑚) (𝑛)

(𝑚+𝑛)
where m>0, n>0

1
5
3

Proof: from definition, we have (m)= ∫
∞
𝑒−𝑥 xm-1 dx ---- (1)

0

Put x=yt so that dx = ydt then (1) gives

(m) = ∫
∞
𝑒−𝑦𝑡 ym-1 tm-1 ydt = ∫

∞
𝑦𝑚 𝑒−𝑦𝑡tm-1 dt

0 0



0
= ∫

∞
𝑦𝑚 𝑒−𝑦𝑥 xm-1 dx -----(2)

𝑦𝑚 0
Or

(𝑚) 
=∫

∞
𝑒−𝑦𝑥 xm-1 dx ------------(3)

0
Multiplying both sides of (3) by ∫

∞
𝑒−𝑦𝑦𝑚+𝑛−1𝑑𝑦 , we get

(m) ∫
∞
𝑒−𝑦 yn-1 dy = ∫ ∫

0 0 0

∞  ∞
𝑒−𝑦(1+𝑥)𝑦𝑚+𝑛−1𝑥𝑚−1𝑑𝑥 𝑑𝑦 --------(4)

0 0

Or (m)   (n) = ∫
∞ 

∫
∞
𝑒−𝑦(1+𝑥) 𝑦𝑚+𝑛−1 dy xm-1 dx

 (m)   (n) = ∫
∞   (m+n)

0  (1+𝑥)𝑚+𝑛

( by inter changing order of integration)

xm-1 dx , by (3)

𝑥𝑚−1

=   (m+n) ∫
∞

0  (1+𝑥)𝑚+𝑛
dx

=   (m+n) B(m,n) (from form(1) of Beta function)

Hence B(m,n) =
(𝑚) (𝑛)

(𝑚+𝑛)

Note :

1)     (n)   (1-n) =
𝜋

𝑠i𝑛𝜋

𝑛
2)     (n+1) = n  (n) or   (n) =

(𝑛+1) 
(n≠0, -1,-2,.---)

3) (1/2) = √𝜋

4)
∞ 2 √𝜋

∫ 𝑒−𝑥 𝑑𝑥 =
0 2

5) ∫
0   

𝑒−𝑥2
𝑑𝑥 =

√𝜋

−∞ 2

∞ 2

∫ 𝑒−𝑥 𝑑𝑥 =√𝜋6)
−∞

7) (n) is defined when n is a negative fraction, But (n) is not defined when n=0 and n is

negative integer.

Solved examples:

11

2
1) Compute i)   ( )

1

2
ii)  (− )

11
Solution : i)   ( )

2

We get that (n) = (n-1) (n-2) ….. (n-r) (n-r) where (n-r) > 0

2
 ( )

11 11

2

11

2
= ( − 1) ( − 1)

= 9 9

2 2
( )

1
5
4



9

2 2

9

2
=

9
. ( − 1)   ( − 1)

2 2
= 9 . 7 7

2
( )

= 9 . 7 7

2 2 2

7

2
( − 1)   ( − 1)

= 9 . 7 . 5 5

2 2 2 2
( )

5

2 2 2 2

5

2
=

9
.

7 
.

5 
. ( − 1)   ( − 1)

=
9 . 7 . 5 . 3 3

2 2 2 2 2
( )

3

2 2 2 2
=

9
.

7 
.

5 
. ( − 1) 

3

2
( − 1)

2 2 2 2
=

9
.

7 
.

5 
.

1
(1/2)

2 2 2 2
=

9
.

7 
.

5 
.

1
√𝜋

2

1
( ( )= √𝜋 )

ii) (−1/2)
1

−1/2

(− +1)

= 2 = -2 (1/2) = 2 √𝜋

𝑛
( (n) =

(𝑛+1)  
) if n is negative fraction)

2) Evaluate

i)
0

2
∫ 𝑥 (8-x3)1/3 dx

ii)
0

𝜋/2

∫ 𝑠i𝑛5 cos7/2 d

0
iii) ∫

𝜋/2
√𝑐𝑜𝑡 d

Solution :

i)
0

2
∫ 𝑥 (8-x3)1/3 dx

Let x3 = 8t

x = (8t)1/3 = 2t1/3

dx =
2

t1/3-1 dt
3

when x=0 ; t=0

x = 2 ; t = 1

 ∫
2
𝑥 (8-x3)1/3 dx = ∫

2
2𝑡1/3 (8-8t)1/3 2 

t1/3-1 dt
0 0 3

=
4

∫
1 
𝑡1/3 [8(1-t)]1/3 t1/3-1 dt

3 0

8 1

1
5
5

2
−1 1/3= ∫ 𝑡3 (1-t) dt

3 0



= dt

= ( , )

8 1
∫ 𝑡

2
−1

(1
3

-t)4/3-1

3 0

8
B

2 4
(by
defi

3 3 3

nition of Beta function)

=
2

3
.

2 4

3 3
( )( )

2    
4(3+ 3)

( B(m,n) =
(𝑚) (𝑛)

(𝑚+𝑛)

2 4 4

=
8   (3) (3−1)( 3−1)

3 (2)
(  (n) = (n-1)   (n-1))

= 8 . 1 2 1

3    3 3 3
( )  ( )

= 8 1

9 3

1

3
( )  (1 − ) ( (n)   (1-n) =

𝜋

𝑠i𝑛𝑛
)

= 8 𝜋 = 16𝜋

9 sin(𝜋/3) 9√3

put 2m-1 = 5 and 2n-1 = 7/2 

so that m=3, n = 9/4

ii) solution :

We have ∫
𝜋/2

𝑠i𝑛2𝑚−1 cos2n-1 d =
1

B(m,n)
0 2

 ∫
𝜋/2

𝑠i𝑛2𝑚−1 cos2n-1 d =
1

B (3, 9) 
0 2 4

=
1

2

9

4
(3) ( )

9
(3+4) (𝑚+𝑛)

( B(m,n) =
(𝑚) (𝑛) 

)

=
1

2

9

4
(3) ( )

21
( 4 )

=

9

4
( )

21

=

9

( 4 )

(4)

17 13 9 9

4   4 4 4
.   .  ( )

=
64

1989

iii) solution:

𝜋/2

∫ √cot 0
d =∫𝜋/2 √𝑐𝑜𝑠 

0 𝑠i𝑛
d

= ∫
𝜋/2

𝑠i𝑛−1/2 cos1/2 d
0

Pw 2m-1 = -1/2 and 2n-1 = 1/2

So that m = 1/4, n = 3/4

Then ∫
𝜋/2

𝑠i𝑛−1/2 cos1/2 d =
1

B(m,n)
0 2

= 1 B 1 3

2 4 4
( ,  )

1
5
6



= 1

2

1 3
(4) (4)

1  3

4  4
( + )

2
= 1 1 3

4 4
( )  ( )

2
= 1 1

4

1

4
( )  (1 − )

= 1 𝜋
𝜋

2 sin (4)

= 1
1

𝜋 = √2𝜋 = 𝜋

2 ( ) 2 √2
2

3) evaluate i) ∫
∞

3−4𝑥2
dx

0 0
ii) ∫

1
𝑥2 (log1/x)3 dx

Solution : i) since 3 = elog3

3−4𝑥2
= 𝑒−4𝑥2𝑙𝑜g3

∫
∞ 3−4𝑥2

dx = ∫
∞ 𝑒−4𝑥2𝑙𝑜g3 dx

0 0

Put 4x2 log3 = t so that x2 =
𝑡

4(𝑙 𝑜 g 3
)

x = √𝑡
----- (1)

dx =

2√𝑙𝑜g3

1 1

2√𝑙𝑜g3 2√𝑡
dt

When x=0  ; t = 0 (from 

(1))  x = ∞ ; t = ∞

∫
∞ 3−4𝑥2 

dx = ∫
∞𝑒−4𝑥2𝑙𝑜g3 dx

0 0

= ∫
∞
𝑒−𝑡

0

1

4√𝑙 𝑜 g
3

t-1/2 dt

=
1

4√𝑙 𝑜 g
3

1

0

∞
∫  𝑒−𝑡 t-1/2 dt

=
4√𝑙 𝑜 g
3

1

0

∞

∫  𝑒−𝑡 t1/2-1 dt

=
4√𝑙 𝑜 g 3 2

(
1

) (by definition of gamma)

=
1

4√𝑙 𝑜 g
3

√𝜋

𝑥
ii) Put log1/x = t i.e.,

1
= et or x = e-t

 dx = - e-t dt

When x=1, t=0,

t=∞

∫
1
𝑥4 (log

1
)3 dx = ∫

0
𝑒−4𝑡 t3 (-e-t dt)

0 𝑥 ∞

1
5
7



0
= ∫

∞
𝑒−5𝑡 t3 dt

Pw- 5t = 4 so that dt =
𝑑𝑢

5

∫0 𝑥


1
𝑥4 (log 

1
)3 dx =

∞

𝑒−𝑢∫0 ( )
3 3 𝑑𝑢

4 5

1

625 0
= ∫

∞
𝑒−𝑢 u3 du

=
∞

∫  𝑒−𝑢 u4-1 du

=

1

625 0

1

625
(4)

0
(  (n) = ∫

∞
𝑒−𝑡 tn-1 dt )

= 3!

625
=

6

625

4) prove that
∞ 𝑥 8 (1−𝑥 6 )

∫0 (1−𝑥)24 dx = 0 using B- functions

Solution:

dx
∞ 𝑥8(1−𝑥6) ∞ 𝑥8(1−𝑥14)

∫0 (1−𝑥)24 dx = ∫0 (1−𝑥)24

∞ 8 14

= ∫  𝑥 −𝑥 )

0  (1−𝑥)24 dx

𝑥8

= ∫
∞

0 (1−𝑥)24

𝑥9−1

𝑥14

(1−𝑥)24
dx - ∫

∞

0

= ∫
∞

0  (1−𝑥)9+15

𝑥15−1

dx - ∫
∞

0 (1−𝑥)15+9
dx

= (9,15) – (15,9)

=  (9,15) – (9,15)

𝑥𝑛−1

(1−𝑥)𝑚+𝑛
((m,n) = ∫

∞

0
)

((m,n) = B(n,m)

0
5) Evaluate ∫

1
𝑥3√1 − 𝑥 dx using - functions

1

𝑥3Solution : ∫0
4−11 3

2
−1√1 − 𝑥 dx = ∫

1
𝑥3 (1 − 𝑥)1/2  dx = ∫ 𝑥 (1 − 𝑥) dx

0 0

2
= (4.

3
) (using defn of Beta function)

=

3

2
(4) ( )

3
(4+2)

(  (m,n) =  
(𝑚) (𝑛)

(𝑚+𝑛)

=

3

2
(4) ( )

11
( 2 )

(  (n) = (n-1)! )

=
3! (3/2)

9 7 5 3 3

2   2 2 2 2
.   .   .       ( )

=
3!24   

= 32

9.7.5.3 315

6)
𝑥2

1+𝑥4
Evaluate 4∫

∞

0
dx using  -  functions.

Solution : put x = √𝑡𝑎𝑛 so that dx =
1

2√𝑡𝑎𝑛
sec2 d

1
5
8



Also when x = 0, =0 

And where x -- ∞ , --π/2

𝑥2

1+𝑥4
4 ∫

∞

0
= 4 ∫𝜋/2   𝑡𝑎𝑛

0 1+𝑡𝑎𝑛2 2√𝑡𝑎𝑛

1
sec2 d

= 4∫
𝜋/2 1

√𝑡𝑎𝑛 d
0 2

= 2 ∫𝜋/2 𝑡𝑎𝑛 d
0 𝑐𝑜𝑠

0
=2 ∫

𝜋/2
𝑠i𝑛1/2 cos1/2 d

Put 2n-1 = ½ and 2n-1=-1/2

= m=3/4 and n =1/4

= 2.
1
(m,n) (∫

𝜋/2
𝑠i𝑛1/2 cos1/2 d

2 0

=  (
3

,
1

) =
1
(m,n)

4   4 2

=

3

4
( )

3  1

4  4
( + ) (𝑚+𝑛)

( (m,n) =
(𝑚) (𝑛) 

)

1

4

1

4
=   ( )  (1 − ) (  (1)=1)

=
𝜋

1/2
= √2𝜋

7)
𝑥2

Show that ∫
1

0 √1−𝑥4
dx

𝑑𝑥
x ∫

1

0 √1−𝑥2
= 𝜋

4

Solution: 1let I = ∫
𝑥21

0 √1−𝑥4
dx

Put x2=   sin

So that x2 = sin1/2 

dx = ½ sin1/2 cos d

1 I = ∫
𝑥21

0 √1−𝑥4
dx = ∫

𝜋/2 𝑠i𝑛

0 √1−𝑠i𝑛2 2

1 
sin1/2 cos d

=
1

∫
𝜋/2

𝑠i𝑛1/2 cos0 d
2 0

Put 2m-1 = 1/2 & 2n-1=0

=
1

.
1 
(

3
, 

1 
) (  ∫

𝜋/2
𝑠i𝑛2𝑚−1 cos2n-1 =

1
(m,n)

2   2 4   2 0 2

=
1

4

3 1

4 2
( )  ( )

3  1

4  2
( + )

((m,n) =
(𝑚) (𝑛)

(𝑚+𝑛)

=
1

4

3

4
( ) √𝜋

3
(4) 2

( (
1

) = √𝜋 )

1
5
9



= √𝜋

4

3
(4)

(5−1) (5−1)
4 4

(  (n) = (n-1)   (n-1)

1 I  = √𝑡
 3

(4)

 1
(4)

-----------(1)

𝑑𝑥
Now let I2 = ∫

1

0 √1−𝑥4

so that x = sin1/2Put x2 =sin

2
dx =

1
sin1/2 cos d

2
𝑑𝑥

I  =∫
1

0 √1−𝑥4 2 √1−𝑠i𝑛2

= ∫
𝜋/2 1 𝑠i𝑛  𝑐𝑜𝑠

−1/2

0

=
1

∫
𝜋/2

𝑠i𝑛−1/2 d
2 0

=
1

∫
𝜋/2

𝑠i𝑛−1/2 cos0 d
2 0

2 2 4    
2

=
1

.
1 
(

1
,

1 
)

= 1

4

1 1
(4) (2)

1  1

4  2
( + ) (𝑚+𝑛)

( (m,n) =
(𝑚) (𝑛)   

)

 I2 = 4√𝜋(1)

4(3/4)
------ (2)

From (1) & (2)

1 𝑥2𝑑𝑥

0 √1−𝑥4
I1 x I2 = ∫ x ∫

1    
𝑑𝑥0 √1−𝑥4

= 4√𝜋(1)

4(1/4)
x

√𝜋

4
4

1
( )

 3

4
( )

= 𝜋

4

8)
𝑥2

Prove that ∫
1

0 √1−𝑥4
dx

𝑑𝑥
x ∫

1

0 √1−𝑥4
=

𝜋

4√2

1Solution : let I = ∫
21 𝑥 𝑑𝑥

0 √1−𝑥4

Put x2=sin

When x = 0, =0 

When x =1, =π/2

i.e., x = √𝑠i𝑛 so that dx =
1

2√𝑠i𝑛 
cos d

0
I1 = ∫𝜋/2 𝑠i𝑛  𝑐𝑜𝑠 𝑑

√1−𝑠i𝑛2 2√𝑠i𝑛

=
1

∫
𝜋/2

𝑠i𝑛1/2 d
2 0

=
1

∫
𝜋/2

𝑠i𝑛1/2 cos0 d
2 0

2    2 4 2
=

1
.

1
(

3
,

1
)

1
6
0



= 1

4

1 1
(4) (2)

3  1

4  2
( + )

= 1

4 (5/4)

1
(4) 𝜋

= √𝜋

4

3
(4)

5 5

= √𝜋

(4−1) (4−1)

3
( )

4
1 -----------(1)

(4)

𝑑𝑥
Let I2 = ∫

1

0 √1−𝑥4

Put x2 = tanØ so that

2

dx = 𝑠𝑒𝑐 Ø

2√𝑡𝑎𝑛
dØ

2I = ∫
𝜋/4 𝑠𝑒𝑐2Ø

2√𝑡𝑎𝑛2Ø√𝑡𝑎𝑛Ø0
dØ

2

= 1 ∫𝜋/4 𝑠𝑒𝑐 Ø
dØ

2 0 𝑠𝑒𝑐Ø √𝑡𝑎𝑛Ø

= 1 ∫𝜋/4 dØ

2 0 √𝑠i𝑛Ø 𝑐𝑜𝑠Ø

dØ

√2

√2𝑠i𝑛Ø

𝑐𝑜𝑠Ø  dØ

√𝑠i𝑛 2Ø

= √2 ∫𝜋/4

2 0

= 1   ∫𝜋/2

0

=
2√𝑠i𝑛

𝜋/2 d𝑡
∫0

( putting 2Ø = t)

=

1

√2

1

2√2

1

2√2

0

𝜋/2
∫ 𝑠i𝑛−1/2𝑡 dt

=
0

𝜋/2
∫ 𝑠i𝑛−1/2𝑡 cos0t dt

Put 2m-1 = 1/2 and 2n-1=0 

So that m=3/4 and n =1/2

1

2√2 2 4 2
=

1
(

1
,

1 
)

=

1 1
(4) (2)

1  1

4  2

1

4√2     ( + )
= √𝜋

1
(4)

3
4

4√2   ( )
-----(2)

 From (1) & (2),

1 2I x I = ∫
21 𝑥 𝑑𝑥

0 √1−𝑥4

𝑑𝑥
x ∫

1

0 √1−𝑥4

=
√𝜋 (

3

4
)

1 x
√𝜋

4√2

1

4
( )

3
(4)

=

(4)

𝜋

2√2

1
6
1



0
9) Prove that ∫

1 
𝑥𝑚 (logx)n dx =

(−1)𝑛𝑛!

(𝑚+1)𝑛+1
where , n, a positive integer and m >-1

Solution :

Put logx = -t so that x = e-t

dx = -e-t dt 

Also when x = 0, t=∞

x=1 ,t=0

 ∫
1
𝑥𝑚 (logx)n dx = ∫

1
(𝑒−𝑡)𝑚 (-t)n (-e-t dt )

0 ∞

0
= (-1)n ∫

∞
𝑒−(𝑚+1)𝑡tn dt

= (-1)n ∫
∞
𝑒−(𝑚+1)𝑡t(n-1)-1 dt

0

(𝑛+1)

(𝑚+1)𝑛+1 0 𝑘𝑛
= (-1)n (∫

∞
𝑒−𝑘𝑥 xn-1 dx =

(𝑛)
n> 0 , k> 0)

𝑛

= (−1) 𝑛!

(𝑚+1)𝑛+1

Note :
1 1

∫ 𝑒𝑚 (log )n dx =
0 𝑥

(𝑛+1)

(𝑚+1)𝑛+1

10) Show that

i)
0 𝑘𝑛

∞ (𝑛)
∫  𝑥𝑛−1 e-kx dx = ( n> 0 , k>0)

ii)
0

∞ 1/𝑚

∫  𝑒−𝑦 dy = m   (m)

Solution :

i)
0

We know that (n) = ∫
∞
𝑥𝑛−1 dx ------- (1)

Put x = 0, t = 0

x =∞ , t=∞

0
 (n) = ∫

∞
𝑒−𝑘𝑡 (kt)n-1 (kdt) ( from (1) )

0
= kn ∫

∞
𝑒−𝑘𝑡 tn-1 dt

0
= kn ∫

∞
𝑒−𝑘𝑡 xn-1 dx

Or
0

∞ (𝑛)
∫ 𝑥𝑛−1e-kx dx =

𝑘𝑛

Put y1/m = x i.e.., y =xm so that dy = mxm-1 dx

1
6
2

ii)

 ∫
∞
𝑒−𝑦1/𝑚

dy = ∫
∞
𝑒−𝑥 (mxm-1) dx

0 0

= m ∫
∞
𝑒−𝑥 xm-1 dx

0

= m   (m) ( by definition of gamma function)



Exercise :(H)

0
1) Evaluate ∫

𝑎
𝑥4 √𝑎2 − 𝑥2 dx

𝜋

32

0
2) Show that ∫

1
𝑥4 (1-x)5 dx = 2(10,6)

∞  8 6

3) Evaluate ∫  
𝑦 (1−𝑦 )  

dy ans: 0
0 (1+𝑦)24

4)
𝜋/2

0
Show that ∫ √𝑠𝑒𝑐 d = 4

𝜋 (1)

3

4
2 ( )

𝑑𝑥

√𝑐𝑜𝑠
5) Prove that ∫

𝜋/2
√𝑐𝑜𝑠𝑥 dx x ∫

𝜋/2

0 0
= π

𝑑𝑥
6) Evaluate ∫

1

0 √−𝑙𝑜g𝑥
ans : √𝜋

0

7) Evaluate ∫
𝜋/2

√𝑡𝑎𝑛+ √𝑠𝑒𝑐 d
32 4 ( )
4

ans:
1   

(
1

) + √𝜋 ]

8)
0

Prove that ∫
∞

√𝑥 e-x2 dx x
0

∞ 2

∫  𝑒−𝑥 e-x4 dx using  -  function and evaluate

∞
9) Show that ∫0 √𝑥 e -x2

dx x ∫0

∞ 𝑒−𝑥2
) 𝜋

√𝑥
dx =

2√2

10) Evaluate ∫
∞
𝑥8 e-x2 dx x ∫

∞
𝑥8 e-x4 dx

0 0 32 4 8

ans :
1    (3      

(
3

)
)

Objective type Questions

𝑒𝑥
1.   The value of c of Rolle’s theorem for f(x) =

𝑠i𝑛𝑥
in ((0,) is

a)  b)
𝜋

c)
𝜋

d)
𝜋

4 3 2

2. Using which mean value theorem, we can calculate approximately the value of (65)1/6 in the 

easier way

a) Cauch’s b) Lagrange’s c) Taylor’s II order d) Rolle’s

3. The value of Cauchy’s mean value theorem for (x) = ex and g(x) = e-x defined on [a,b], o<a<b is

a) √𝑎𝑏 b) 𝑎−𝑏 c) 𝑎+𝑏

2 2
𝑎+𝑏

d) 2𝑎𝑏

4. If f(x) is continuous in [a,b], f1(x) exists for every value of x in (a,b), f(a)=f(b), there exists at 

least one value c of x in (a,b) such that f1(c) =

1
6
3



a) 0 b) a+b c) c d) b

5. Lagrange’s mean value theorem for f(x) = sec x in (0.2) is

a) Applicable b) not applicable due to non-differentiability

c) applicable and c=
𝜋

d) not applicable due to discontinuity
2

𝐿2 𝐿2

2 2

6.  F(a+h) = f(a) + hf1(a) +
ℎ

fII(a) + …………… +
ℎ

fn(a+θh) is called

a) Taylor’s theorem with lagrange form of remainder

b) Caughy’s theorem with lagranges form of remainder

c) Raiman’s theorem with lagrange form of remainder

d) Lagrange’s theorem with lagrange form of remainder

𝐿𝑛

𝑛

7.  If f(x) =f(o) + ………. FII(o),
𝑥

then the series is called

a) Maclaurin’s Series b) Taylor’s Series

c) Cauchy’s Series d) lagrange’s series

8. The value of Rolle’s theorem in (-1,1) for f(x) = x3-x is

a) 0 b) ±
1

c)
1

d) ±
1

√3 2 √2

𝑏− 𝑥2
9.  The value of x so that

ƒ(𝑏) − ƒ(𝑎)
f1(x) whne a< x<b given f(x)=

1 
, a=1, b=4

a) b)
13

4 2
c) d)

91

4 4

10. The value of c of Cauchy’s mean value theorem for the function f(x) = x2, g(x) = x3 in the 

interval [1,2] is

14 c) 17
a) b)

3
d)

5

9 14 9 14

11. If f(o)=0, f1(0)=1, fII(0)=1, fIII(0)=1, then the machlaurin’s expansion of f(x) is given by

a)  x + +
2 3

𝑥2 𝑥3 𝑥2 𝑥3

2 6
+ ….. b) x + + + …..

c) -x - +
𝑥2 𝑥3 𝑥2 𝑥3

2 3 2 3
+ ….. d) x - + + …..

2 𝑥2
12. The value c of Rolle’s theorem in [

1
,2] for f(x) = x2 +

1 
is

a) c) 1 d)
33 b) 5

4 4 2

13. Lagrange’s mean value theorem for f(x)=secc in (0,2π) is

a) Not applicable due to discontinuity b) applicable & c=
𝜋

2

c) not applicable due to non differentiable d) applicable

1
6
4



14. In the Taylor’s theorem, the cauchy’s form of remainder is

a)
ℎ𝑛−1 ƒ𝑛−1(𝑎−𝜃ℎ)

𝐿 𝑛
b) hn fn (a+θh)

c)
ℎ𝑛(1−𝜃)𝑛−1ƒ𝑛(𝑎−𝜃ℎ)

𝑛+1 𝑛

d) ℎ ƒ (𝑎−𝜃ℎ)

𝐿 𝑛−1 𝐿 𝑛

b)
𝜋a) c)

𝜋
d)

15. The value of c in Rolle’s theorem for f(x) = sinx in(0,πa) is

1 𝜋

𝑎 4𝑛 7𝑛 ℎ𝑛

16. The value of c in Rolle’s theorem for f(x)=x2-x in (-1,1) 

a) 0 b) 0.5 c) 0.25 d) -0.5

17. The value of c in Rolle’s theorem for f(x) = x2-x(0,1) 

a) 0 b) 0.5 c) 0.25 d) -0.5

18. The value of c in lagrange’s mean value theorem for f(x) = ex in (0,1) is

a) Log(e-e-1) b) loge(c ) c) log(e+1) d) log (e-1)

19. The value of c in Cauchy’s MVT for f(x)=ex and g(x) = e-x in (3,7) is 

a) 4 b) 5 c) 4.5 d) 6

20. The value of θ if f(x)=x2 &

f(x+h)=f(x)+hf1(x+θh) a) -0.5 b) 0.25 c) 0

d) 0.5

21.The value of c in Cauchy’s mean value theorem for f(x) =√𝑥 and g(x) = 

a) 1.5 b) 2 c) 2.5 d) 3

√𝑥

1 
in (1,4) is

22. The value of c in lagrange’s mean value theorem for f(x) = logx in [1,e] is 

a) (e-1)-1 b) e+1 c) e-1 d) e

1

23. Lagrange’s mean value theorem is not applicable to the function f(x) = 𝑥3 in [-1,1] because

a) F(-1)≠f(1) b) f is not continuous in [-1,1]

c) f is not derivable in (-1,1) d) f is not a objective function

𝑥
24. Lagrange’s MVT is not applicable to the function defined on [-1,1] by f(x) =xsin

1
(x≠0) and

f(0)=0 because

a) F(-1) =f(1) b) f is not continuous in [-1,1]

c) f is not deriable in (-1,1) d) f is not a one to one function

2
25. The value of c for lagrange’s MVT for the function f(x) =cosx in [0,

𝜋
] is

1
6
5

a) Cos-1 (
2
) b) sin-1 (

2
) c) sin-1 (

1
) d) Cos-1 (

1
)

𝜋 𝜋 𝜋 𝜋

26. The value of c for Rolle’s theorem for f(x)=(x-a)(x-b) in [a,b] is



a) – 𝑎+𝑏
b) √𝑎𝑏 c) a+b

2 2
d) 𝑎+𝑏

27. The value of c for lagrange’s mean value theorem for f(x)=(x-

2)(x-3) in [0,1] is a) 0.5 b) 1 c) 2.5 d) 2

28. The value of c of Rolle’s theorem for f(x)=(x-1)(x-2) in [0,3] is 

a) 1.5 b) 2.5 c) 3 d) 2

2
29. The value of c of Cauchy’s mean value theorem for f(x)=sinx and g(x)=cosx in [0,

𝜋
]

a) c)
𝜋

d)
𝜋𝜋 b) 𝜋

ð 6 4 3

30. Maclaurin’s expansion for log(1+x) is

a)  x - + -
2 3 4

𝑥2 𝑥3 𝑥4 𝑥2 𝑥3 𝑥4

2 3 4
+ …. b) x + + + + ….

𝑥2 𝑥3 𝑥4 𝑥2 𝑥3 𝑥4

2! 3! 4!
b)  c) x + + + + …. d) x - + - + ….

2! 3! 4!

31. Maclaurin’s expansion of cosx is

a)
K2 r

∑∞
𝑟=0 (2𝑟)!

(−1)rK2r

b) ∑∞
(2𝑟)!𝑟=0

(−1)r(K2r+1

c) ∑∞
𝑟=0

K2r+1

d) ∑∞
(2𝑟+1)! 𝑟=0 (2𝑟+1)!

32. The expansion of ex in powers of (x-1)

𝑟 !
a) E (∑∞

𝑟=0
(1−K)r

) (1−K)r

b) e-1 ∑∞
𝑟!𝑟=0

c) e(∑∞
𝑟=0

(−1)r(K−1)r
) (−1)r(K−1)r

𝑟 ! 𝑟 !
d) ∑∞

𝑟=0

2
33. The expansion for sinx in powers of (x-

𝜋) is

2 2 4 2
a) 1-

1
(x-

𝜋)2 +
1

(x -
𝜋)4 - ………………

2 3! 2
b) x+(x-

𝜋) +
1

(x-
𝜋)3 + ……………….

2 2 4! 2
c)  1+

1
(x-

𝜋)2 +
1

(x-
𝜋)4 + ……………..

d) x- (x-
𝜋)2 + 1

(x-
𝜋)3 + ………………

2 3! 2

34. Volume of the solid generated by revolving y=f(x), the x-axis and the lines x=a, x=b is

1
6
6

a)
𝑏 𝑏

∫ 𝜋𝑥2 dx b) ∫ 𝜋(𝑦2 − 𝑥2) dx c)
𝑎 𝑎 𝑎

𝑏
∫ 𝜋𝑦2 dx d) none

35. Volume of the solid generated by revolving the area bounded by the curve x=f(x), the y-axis and 

the lines y=a, y=b is

a) ∫
𝑏
𝜋𝑥2 dx b) ∫

𝑏
𝜋𝑥2 dy c) ∫

𝑏
𝜋𝑥2 dx d) ∫

𝑏
𝜋𝑦2 dy

𝑎 𝑎 𝑎 𝑎

36. The volume of the sphere of radius ‘a’ units is



a)
2𝜋𝑎3

b) 𝜋𝑎
3

c) πa3

3

d) 4𝜋𝑎

3 3 3

37. The surface area of solid generated yb revolution of circle x2+y2=r2 about the diameter is

a)
2𝜋𝑎𝑏2

2

b) 4𝜋𝑏𝑎

3 3

2

c) 4𝜋𝑎𝑏

3

b) r2 π b) 2r2π c) 3r2π

d) 4πab2

d) 4r2π

38. The surface area of solid generated by revolution of circle x2+y2=r2 about the diameter i)

a) r2π b)2r2 π c) 3r2 π d) 3r2π

0
39. ∫

𝜋/2
𝑠i𝑛3𝑥 cos5/2 x dx =

40.
0

𝜋/2
∫ 𝑠i𝑛7𝑥 dx =

41.
0

𝜋/2
∫ 𝑡𝑎𝑛1/2𝜃 dθ =

42. (3/4) =(1/4)ד

0
43. ∫

∞
𝑥6 e-2x dx =

𝑥𝑑
44. ∫

1

0 √1−𝑥5
=

0
45. The value of ∫

𝜋/2
𝑠i𝑛𝑝 cos2 d in terms of  function in 

46. The value of (-1/2) =

47. The value of (1/2) =

48. The value of (1) =

49. The value of (
1

,
1

=)
2 2

4 4
50. The value of (

1
) (

3
) =_

51. The value of ∫
∞
𝑥−𝑘𝑥 xn-1 dx (n >0, k>0)

0

52. The value of (1,2) + (2,1) =

0
53. In terms of  function ∫

∞
𝑠i𝑛7√𝑐𝑜𝑠 d =

54.  (p+1,2) + (p,q+1) = _

55. The relation between beta and gamma function is 

0
56. ∫

∞
𝑒−𝑥2

dx =

−∞
57. ∫

0   
𝑒−𝑥2

dx =

−∞
58. ∫

∞
𝑒−𝑥2

dx =

0
59. ∫

𝜋/2
𝑠i𝑛2𝑚−1  cos2n-1 d =

60. If n is a non negative integer, then (n+1)=

1
6
7



1
6
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UNIT- V



FUNCTION OF SEVERAL VARIABLES

Functions of Several Variable

A Symbol ‘Z’ which has a definite value for every pair of values of x and y is called a function 

of two independent variables x and y and we write Z = f(x,y).

Limit of a Function f(x,y):-

The function f(x,y) defined in a Region R, is said to tend to the limit ‘’ as xa and 

yb iff corresponding to a positive number , There exists another positive number  such that

| f(x,y) –  | <  for 0 < (x-a)2 + (y-b)2 < 2 for every point (x,y) in R.

Continuity:-

A function f(x,y) is said to be continuous at the point (a,b) if 

Lt f(x,y) = f(a,b).

xa  

yb

Homogeneous Function:-

An expression of the form,

a0 xn + a1 xn-1 y + a2 xn-2 y2 + - - - - + an yn 

homogeneous function of order ‘n’.

Euler’s Theorem:-

in which every term is of nth degree, is called a

If z = f(x,y) be a homogeneous function of order ‘n’ in x and y, then

Total Derivatives:-

if u = f(x,y)

where x = (t) , y = (t)

then du = u dx + u dy 

dt x dt y dt

6𝑥 6F
x

6𝑧
+ Y

6Z
=nz

1
6
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2) if f(x,y) = c 

then

dy =

dx

- (u/x)

(u/y)

3) if 

then

u = f(x,y) where x = (s,t), y = (s,t)

u = u x + u y

s x s y s

u = u x + u y

t x t y t
Eulers theroms problems;

1.Verify Eulers therom for the function xy+yz+zx

Sol; Let f(x,y,z)=xy+yz+zx 

f(kx,ky,kz)=𝑘2f(x,y,z)

This is homogeneous fuction of second degree



6 ƒ

6𝑥
We have =y+z

6 ƒ   

6𝑦
=x+z

6 ƒ   

6𝑧
=x+y

6𝑥 6𝑧 6𝑧
x

6 ƒ
+y

6ƒ
+z

6ƒ
=x(y+z)+y(x+z)+z(x+y)

=xy+xz+yx+yz+zx+zy

=2(xy+yz+zx)

=2f(x,y,z)

PROLEMS;

1.Verify  the Eulers therom for z=
1

𝗑2+𝗑𝑦+𝑦2

2.Verify the Eulers therom for   u= sin−1 𝗑
+tan−1 𝑦

𝑦 𝗑

𝗑 𝑦
3.Verify the Eulers therom for u= 𝗑2 tan−1 𝑦

- 𝑦2 tan−1 𝗑
and also prove that

62𝑢
=

𝗑2_𝑦2

6𝗑6𝑦 𝗑2+𝑦2

Jacobian (J) : Let U = u (x , y) , V = v(x , y) are two functions of the independent variables x , y. The 

jacobian of ( u , v ) w.r.t (x , y ) is given by

   
J ( )  = = Note : J

 u ,v 
 J

 x , y 
 1 x, y   u,v 

Similarly of U = u(x, y , z ) , V = v (x, y , z) , W = w(x, y , z) 

Then the Jacobian of u , v , w w.r.to x , y , z is given by

J ( ) = =

Solved Problems:

1. If x + y2 = u , y + z2 = v , z + x2 = w find
(u , v, w)

( x, y, z)

Sol : Given x + y2 = u , y + z2 = v , z + x2 = w

We have = =



= 1(1-0) – 2y(0 – 4xz) + 0

= 1 – 2y(-4xz)

= 1 + 8xyz

= =

1
7
0
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2. S.T the functions u = x + y + z , v = x2 + y2 + z2 -2xy – 2yz -2xz 

are functionally related. (’07 S-1)

Sol: Given u = x + y + z

v = x2 + y2 + z2 -2xy – 2yz -2xz 

w = x3 + y3 + z3 -3xyz

we have

and w = x3 + y3 + z3 -3xyz

=

=

=6

c1 => c1 –c2 

c2 => c2 –c3

=6

=6[2(x - y) (y2 + xy – xz -z2 )-2(y - z)(x2 + xz – yz - y2)]

=6[2(x - y)( y – z)(x + y + z) – 2(y – z)(x – y)(x + y + z)]

=0

3. If x + y + z = u , y + z = uv , z = uvw then evaluate (’06 S-1)

Sol: x + y + z = u 

y + z = uv

z = uvw

y = uv – uvw = uv(1 – w)

x = u – uv = u (1 – v)

=

=

R2 => R2 + R3

=

1
7
2



= uv[ u –uv +uv]

= u2v

4.  If u = x2 – y2 , v =2xy where x = r cos , y = r sin S.T = 4r3 (’07 S-2)

Sol: Given u = x2 –

y2 ,

v = 2xy

=r2cos2 –

r2sin2

=

2rcos

r sin

= r2

(cos2

– sin2

= r2 sin2

= r2 cos2

= =

= (2r)(2r)

+ r sin22 ]

+ sin22 ]

5. If u = , v = , w =

= 4r2 [rcos22

=4r2(r)[ cos22

=4r3

find (’08 S-4)

Sol: Given u = , v = , w =

We have

=

, uy =

xz(-1/y2) =

, uz =

,

ux = yz(-1/x2) =

= ,

= , = , = xy (-1/z2) =

=

= . .

=

1
7
3



= 1[-1(1-1) -1(-1-1) + (1+1) ]

= 0 -1(-2)+(2)

=2 + 2

=4

, z = and u = r sin cos , v = r sin sin ,w = r

. = 1 ( ’08 S-2 )

Assignment

Calculate if x = , y = 

cos

6. If x = er sec , y = er tan P.T

Sol: Given x = er sec , y = er tan

= , =

= er sec = x ,

= er tan = y ,

= ersec tan

= er sec2

x2 – y2 = e2r (sec2 - tan2  )

 2r = log (x2 – y2 )

 r = ½ log (x2 – y2 )

= ½ (2x) =

= ½ (-2y) =

= = =

 = , = sin-1( )

= y ( ) =

= (1/x) =

= = e2r sec2 - y er sec tan

= e2r sec [sec2 - tan2 ] = e2r sec

=

=[ - ]

1
7
4



= = =

. = 1

Functional Dependence

Two functions u and v are functionally dependent if their Jacobian

J ( ) = = = 0

If the Jacobian of u, v is not equal to zero then those functions u, v are functionally independent.

** Maximum & Minimum for function of a single Variable:

To find the Maxima & Minima of f(x) we use the following procedure.

1
7
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(i)

(ii)

(iii)

Find  f' (x) and equate it to zero

solve the above equation we get x0,x1 as roots. 

Then find f11(x).

If f11(x)(x = x0) > 0, then f(x) is minimum at x0

If f11(x)(x = x0) , < 0, f(x) is maximum at x0 . Similarly we do this for other stationary points.

PROBLEMS:

1.   Find the max & min of the function f(x) = x5 -3x4 + 5 (’08 S-1)

Sol : Given f(x) = x5 -3x4 + 5 

f1(x) = 5x4 – 12x3

for maxima or minima f1(x) =0  

5x4 – 12x3 = 0

X =0 , x= 12/5

f11(x) = 20 x3 – 36 x2

At x = 0  => f11(x) = 0.  So f is neither maximum nor minimum at s = 0 

At x = (12/5) f11(x) =20 (12/5)3 – 36(12/5)

=144(48-36) /25 =1728/25 > 0

So f(x) is minimum at x = 12/5

The minimum value is f(12/5) = (12/5)5 -3(12/5)4 + 5



** Maxima & Minima for functions of two Variables:

Working procedure:

1. Find and Equate each to zero. Solve these equations for x & y we get the pair of values

(a1,b1) (a2,b2) (a3 ,b3) ………………

2. Find l = 2 f


,m
2 f

x2  x y
, n =

2 f

y2

iii)

i) IF l n –m2 > 0 and l < 0 at (a1,b1) then f(x ,y) is maximum at (a1,b1) and maximum value is 

f(a1,b1) .

ii) IF l n –m2 > 0 and l > 0 at (a1,b1) then f(x ,y) is minimum at (a1,b1) and minimum value is 

f(a1,b1) .

IF l n –m2 < 0 and at (a1,b1) then f(x ,y) is neither maximum nor minimum at (a1,b1). In this 

case (a1,b1) is saddle point.

iv) IF l n –m2 = 0 and at (a1,b1) , no conclusion can be drawn about maximum or minimum and 

needs further investigation. Similarly we do this for other stationary points.
PROBLEMS:

1. Locate the stationary points & examine their nature of the following functions.

(’07 S -2 )

u =x4 + y4 -2x2 +4xy -2y2, (x > 0, y > 0) 

Sol: Given u( x ,y) = x4 + y4 -2x2 +4xy -2y2

-------------------> (1)

For maxima & minima
u

= 0, u = 0
x y

= 4x3 -4x + 4y = 0  x3 – x + y = 0

= 4y3 +4x - 4y = 0  y3 + x – y = 0 -------------------> (2)

Hence (3)

Adding (1) & (2) ,

x3 + y3 = 0

= x = – y -------------------> (3)

(1)  x2 – 2x  x = 0, 2, 2

 y = 0, - 2, 2

l =
2 f 

= 12x2 – 4 , m = = (
x2

) = 4 & n = = 12y2 – 4

ln – m2 = (12x2 – 4 )( 12y2 – 4 ) -16

At ( , ) , ln – m2 = (24 – 4)(24 -4) -16 = (20) (20) – 16 > 0

1
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The function has minimum value at (

At (0,0) , ln – m2 = (0– 4)(0 -4) -16 = 0

(0,0) is not a extrem value.

, )

2. Investigate the maxima & minima if any of the function f(x) = x3y2(1-x-y).

(‘08 S – 4)

Sol: Given f(x) = x3y2 (1-x-y) = x3y2- x4y2 – x3y3

= 3x2y2 – 4x3y2 -3x2y3 = 2x3y – 2x4y -3x3y2

For maxima & minima = 0 and

 3x2y2 – 4x3y2 -3x2y3

 2x3y – 2x4y -3x3y2

From (1) & (2) 4x + 3y – 3 = 0

= 0

= 0 => x2y2(3 – 4x -3y) = 0 ---------------> (1)

= 0 => x3y(2 – 2x -3y) = 0 ----------------> (2)

----------------X2

2x + 3y - 2 = 0 -----------------X3

2x = 1 => x = ½

4 ( ½) + 3y – 3 = 0 => 3y = 3 -2 , y = (1/3)

l = 2 f

x2
= 6xy2-12x2y2 -6xy3

 
 

2x

 2 f 
(1/2,1/3) = 6(1/2)(1/3)2 -12 (1/2)2(1/3)2 -6(1/2)(1/3)3 = 1/3 – 1/3 -1/9 = -1/9

m =
xy

2 f
= ( ) =6x2y -8 x3y – 9x2y2









 2 f 

xy
(1/2 ,1/3) = 6(1/2)2(1/3) -8 (1/2)3(1/3) -9(1/2)2(1/3)3 = =

n = = 2x3 -2x4 -6x3y

 
 

2y

 2 f 
(1/2,1/3) = 2(1/2)3 -2(1/2)4 -6(1/2)3(1/3) =  - - = -

ln- m2 =(-1/9)(-1/8) –(-1/12)2  = - = =

The function has a maximum value at (1/2 , 1/3)

1
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> 0

3. Find three positive numbers whose sum is 100 and whose product is maximum.

(’08 S-1)



Sol: Let x ,y ,z be three +ve numbers.

Given x + y + z = 100

 Z = 100 – x – y

Let f (x,y) = xyz =xy(100 – x – y) =100xy –x2y-xy2

For maxima or minima = 0 and = 0

=100y –2xy-y2 = 0 => y(100- 2x –y) = 0  ----------------> (1)

= 100x –x2 -2xy = 0 => x(100 –x -2y) = 0  ------------------> (2)

100 -2x –y = 0

200 -2x -4y =0

-100 + 3y = 0  => 3y =100 => y =100/3 

100 – x –(200/3) = 0 => x = 100/3

=- 2yl = 2 f

x2

 
 

2x

 2 f 
 (100/3 , 100/3 ) = - 200/3

m =
xy

2 f
= ( ) = 100 -2x -2y

 

 2 f   (100/3 , 100/3 ) = 100 –(200/3) –(200/3) = -(100/3)
xy

2 f
n =

y2 = -2x


 
 2 y

 2 f 
 (100/3 , 100/3 ) = - 200/3

ln -m2 = (-200/3) (-200/3) - (-100/3)2 = (100)2 /3

The function has a maximum value at (100/3 , 100/3)

i.e. at x = 100/3, y = 100/3  z = 100 
100


100


100

3 3 3

The required no. are x = 100/3, y = 100/3, z = 100/3

4. Find the maxima & minima of the function f(x) = 2(x2 –y2) –x4 +y4 (’08 S-3)

Sol: Given f(x) = 2(x2 –y2) –x4 +y4 = 2x2 –2y2 –x4 +y4

For maxima & minima = 0 and = 0

= 4x - 4x3 = 0 => 4x(1-x2) = 0 => x = 0 , x = ± 1

1
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= -4y + 4y3 = 0 => -4y (1-y2) = 0 =>y = 0, y = ± 1

l = = 4-12x2

m =
x  y 

=   f  = 0
 

= -4 +12y2n =

we have ln – m2 = (4-12x2)( -4 +12y2 ) – 0

= -16 +48x2 +48y2 -144x2y2

= 48x2 +48y2 -144x2y2 -16 

At ( 0 , ± 1 )

ln – m2 = 0 + 48 - 0 -16 =32 > 0

l = 4-0 = 4 > 0

f has minimum value at ( 0 , ± 1 ) 

f (x ,y ) = 2(x2 –y2) –x4 +y4

f ( 0 , ± 1 ) = 0 – 2 – 0 + 1 = -1

The minimum value is ‘-1 ‘. 

At ( ± 1 ,0 )

ln – m2 = 48 + 0 - 0 -16 =32 > 0

l = 4-12 = - 8 < 0

f has maximum value at ( ± 1 ,0 ) 

f (x ,y ) = 2(x2 –y2) –x4 +y4

f ( ± 1 , 0 ) =2 -0 -1 + 0 = 1

The maximum value is ‘1 ‘.

At (0,0) , (± 1 , ± 1)

ln – m2 < 0 

l = 4 -12x2

(0 , 0) & (± 1 , ± 1) are saddle points.

F has no max & min values at (0 , 0) , (± 1 , ± 1).

i)

ii)

iii)

Assignment

1. Find the maximum value of x,y,z when x + y + z = a .

[ Ans: ]

1
7
9



*Extremum : A function which have a maximum or minimum or both is called 

‘extremum’

*Extreme value :- The maximum value or minimum value or both of a function is 

Extreme value.

*Stationary points: - To get stationary points we solve the equations = 0 and

= 0 i.e the pairs (a1, b1), (a2, b2) ………….. Are called 

Stationary.

*Maxima & Minima for a function with constant condition :Lagrangian Method

Suppose f(x , y , z) = 0 ------------(1)

( x , y , z) = 0 ------------- (2)

F(x , y , z) = f(x , y , z) + ( x , y , z) where is called Lagrange’s constant.

x
1. F = 0 => + = 0 --------------- (3)

F = 0 => + = 0 --------------- (4)
y

F

z
= 0   => + = 0 --------------- (5)

2. Solving the equations (2) (3) (4) & (5) we get the stationary point (x, y, z).

3. Substitute the value of x , y , z in equation (1) we get the extremum.

Problem:

1.   Find the minimum value of x2 +y2 +z2 given x + y + z =3a (’08 S-2)

Sol: u = x2 +y2 +z2

= x + y + z - 3a = 0 

Using Lagrange’s function

F(x , y , z) = u(x , y , z) + ( x , y , z) 

For maxima or minima

= + = 2x + = 0 ------------ (1)

= + = 2y + = 0 ------------ (2)

F

x

F

y

F

z
= + = 2z + = 0 ------------ (3)

(1) , (2) & (3)

= -2x = -2y = -2z

1
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= x + x + x - 3a = 0

= a

= y =z = a

Minimum value of u = a2 + a2 + a2 =3 a2

Fill in the blanks-

1. if u=x+y and v=xy then = --------------------------

2. if x= cosv , y= v then =

3. =

4. if u= then =

5. x = -------------------------

6. Two functions u and v are said to be functionally dependent if = 

7. If u= and v= then = 

8. If u= siny,v= cosy then =

9. . = 

10. If x=rcos ,y=rsin then =

11. If u=3x+5y and v=4x-3y then =

13. If u= and v=xy then = 

1
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OBJECTIVE TYPE QUESTIONS

14. If u= - 2y ,v=x+y then

(a) (b) 2(x+1)

16. If u(1-v)=x, uv=y then

(a) 0 (b) 1

=

(c) 3(x+1) (d) None

. =

(c) xy (d) None  

y then . =
17. If u= , v= x +

(a) 0 (b) 1 (c) xy (d) None

18. Are u=x , v=2x functionally dependent? If so what is ?

(a) yes,1 (b) yes,0 (c) No,0 (d) None

19. If u=

y ,v=

(a)5

then is

(b)4 (c) (d)

(Assignment Questions)

{ Functions of Several Variables}

1. If x+y2=u , y+z2=v ,z+ x2=w find .

2. If x+y+z=u, y+z= uv, z=uvw then evaluate .

3. S.T the functions u=x+y+z, v=x2+y2+z2-2xy-2zx and w=x3+y3+z3-3xyz are functionally 

related.

4. Find the max & min values of the function f(x)=x5−3x4+5.

5. Find three positive numbers whose sum is 100 and whose product is maximum.

6. Locate the stationary points & examine their nature of the following functions u=x4+y4-

2x2+4xy-2y2 (x>0,y>0).

7. If u= ,v= , w= , find .

1
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FUNCTION OF SEVERALVARIABLES

Functions of Several Variable

A Symbol ‘Z’ which has a definite value for every pair of values of x and y is called a function 

of two independent variables x and y and we write Z = f(x,y).

Limit of a Function f(x,y):-

The function f(x,y) defined in a Region R, is said to tend to the limit ‘’ as xa and 

yb iff corresponding to a positive number , There exists another positive number  such that

| f(x,y) –  | <  for 0 < (x-a)2 + (y-b)2 < 2 for every point (x,y) in R.

Continuity:-

A function f(x,y) is said to be continuous at the point (a,b) if 

Lt f(x,y) = f(a,b).

xa  

yb

Homogeneous Function:-

An expression of the form,

a0 xn + a1 xn-1 y + a2 xn-2 y2 + - - - - + an yn 

homogeneous function of order ‘n’.

Euler’s Theorem:-

in which every term is of nth degree, is called a

If z = f(x,y) be a homogeneous function of order ‘n’ in x and y, then

Total Derivatives:-

if u = f(x,y)

where x = (t) , y = (t)

then du = u dx + u dy 

dt x dt y dt

6𝑥 6F
x

6𝑧
+ Y

6Z
=nz
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2) if f(x,y) = c 

then

dy =

dx

- (u/x)

(u/y)

3) if 

then

u = f(x,y) where x = (s,t), y = (s,t)

u = u x + u y

s x s y s

u = u x + u y

t x t y t
Eulers theroms problems;

1.Verify Eulers therom for the function xy+yz+zx

Sol; Let f(x,y,z)=xy+yz+zx 

f(kx,ky,kz)=𝑘2f(x,y,z)

This is homogeneous fuction of second degree



6 ƒ

6𝑥
We have =y+z

6 ƒ   

6𝑦
=x+z

6 ƒ   

6𝑧
=x+y

6𝑥 6𝑧 6𝑧
x

6ƒ
+y

6ƒ
+z

6ƒ
=x(y+z)+y(x+z)+z(x+y)

=xy+xz+yx+yz+zx+zy

=2(xy+yz+zx)

=2f(x,y,z)

PROLEMS;

1.Verify  the Eulers therom for z=
1

𝗑2+𝗑𝑦+𝑦2

2.Verify the Eulers therom for   u= sin−1 𝗑
+tan−1 𝑦

𝑦 𝗑

𝗑 𝑦
3.Verify the Eulers therom for u= 𝗑2 tan−1 𝑦

- 𝑦2 tan−1 𝗑
and also prove that

62𝑢
=

𝗑2_𝑦2

6𝗑6𝑦 𝗑2+𝑦2

Jacobian (J) : Let U = u (x , y) , V = v(x , y) are two functions of the independent variables x , y. The 

jacobian of ( u , v ) w.r.t (x , y ) is given by

   
J ( )  = = Note : J

 u ,v 
 J

 x, y 
 1 x, y   u,v 

Similarly of U = u(x, y , z ) , V = v (x, y , z) , W = w(x, y , z) 

Then the Jacobian of u , v , w w.r.to x , y , z is given by

J ( ) = =

Solved Problems:

1. If x + y2 = u , y + z2 = v , z + x2 = w find
 (u , v, w)

 (x, y , z)

Sol : Given x + y2 = u , y + z2 = v , z + x2 = w

We have = =



= 1(1-0) – 2y(0 – 4xz) + 0

= 1 – 2y(-4xz)

= 1 + 8xyz

= =
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2. S.T the functions u = x + y + z , v = x2 + y2 + z2 -2xy – 2yz -2xz 

are functionally related. (’07 S-1)
Sol: Given u = x + y + z

v = x2 + y2 + z2 -2xy – 2yz -2xz 

w = x3 + y3 + z3 -3xyz

we have

and w = x3 + y3 + z3 -3xyz

=

=

=6

c1 => c1 –c2 

c2 => c2 –c3

=6

=6[2(x - y) (y2 + xy – xz -z2 )-2(y - z)(x2 + xz – yz - y2)]

=6[2(x - y)( y – z)(x + y + z) – 2(y – z)(x – y)(x + y + z)]

=0

3. If x + y + z = u , y + z = uv , z = uvw then evaluate (’06 S-1)

Sol: x + y + z = u 

y + z = uv

z = uvw

y = uv – uvw = uv(1 – w)

x = u – uv = u (1 – v)

=

=

R2 => R2 + R3

=
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= uv[ u –uv +uv]

= u2v

4.  If u = x2 – y2 , v =2xy where x = r cos , y = r sin S.T = 4r3 (’07 S-2)

Sol: Given u = x2 – y2 , v = 2xy

=r2cos2 – r2sin2 = 2rcos r sin

= r2 (cos2 – sin2 = r2 sin2

= r2 cos2

= =

= (2r)(2r)

+ r sin22 ]

+ sin22 ]

5. If u = , v = , w =

= 4r2 [rcos22

=4r2(r)[ cos22

=4r3

find (’08 S-4)

Sol: Given u = , v = , w =

We have

=

, uy =

xz(-1/y2) =

, uz =

,

ux = yz(-1/x2) =

= ,

= , = , = xy (-1/z2) =

=

= . .

=
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= 1[-1(1-1) -1(-1-1) + (1+1) ]

= 0 -1(-2)+(2)

=2 + 2

=4

, z = and u = r sin cos , v = r sin sin ,w = r

. = 1 ( ’08 S-2 )

Assignment

Calculate if x = , y = 

cos

6. If x = er sec , y = er tan P.T

Sol: Given x = er sec , y = er tan

= , =

= er sec = x ,

= er tan = y ,

= ersec tan

= er sec2

x2 – y2 = e2r (sec2 - tan2  )

 2r = log (x2 – y2 )

 r = ½ log (x2 – y2 )

= ½ (2x) =

= ½ (-2y) =

= = =

 = , = sin-1( )

= y ( ) =

= (1/x) =

= = e2r sec2 - y er sec tan

= e2r sec [sec2 - tan2 ] = e2r sec

=

=[ - ]
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= = =

. = 1

Functional Dependence

Two functions u and v are functionally dependent if their Jacobian

J ( ) = = = 0

If the Jacobian of u, v is not equal to zero then those functions u, v are functionally independent.

** Maximum & Minimum for function of a single Variable:

To find the Maxima & Minima of f(x) we use the following procedure.
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(i)

(ii)

(iii)

Find  f' (x) and equate it to zero

solve the above equation we get x0,x1 as roots. 

Then find f11(x).

If f11(x)(x = x0) > 0, then f(x) is minimum at x0

If f11(x)(x = x0) , < 0, f(x) is maximum at x0 . Similarly we do this for other stationary points.

PROBLEMS:

1.   Find the max & min of the function f(x) = x5 -3x4 + 5 (’08 S-1)

Sol : Given f(x) = x5 -3x4 + 5 

f1(x) = 5x4 – 12x3

for maxima or minima f1(x) =0  

5x4 – 12x3 = 0

X =0 , x= 12/5

f11(x) = 20 x3 – 36 x2

At x = 0  => f11(x) = 0.  So f is neither maximum nor minimum at s = 0 

At x = (12/5) f11(x) =20 (12/5)3 – 36(12/5)

=144(48-36) /25 =1728/25 > 0

So f(x) is minimum at x = 12/5

The minimum value is f(12/5) = (12/5)5 -3(12/5)4 + 5



** Maxima & Minima for functions of two Variables:

Working procedure:

1. Find and Equate each to zero. Solve these equations for x & y we get the pair of values

(a1,b1) (a2,b2) (a3 ,b3) ………………

2. Find l = 2 f


,m
2 f

x2  x y
, n =

2 f

y2

iii)

i) IF l n –m2 > 0 and l < 0 at (a1,b1) then f(x ,y) is maximum at (a1,b1) and maximum value is 

f(a1,b1) .

ii) IF l n –m2 > 0 and l > 0 at (a1,b1) then f(x ,y) is minimum at (a1,b1) and minimum value is 

f(a1,b1) .

IF l n –m2 < 0 and at (a1,b1) then f(x ,y) is neither maximum nor minimum at (a1,b1). In this 

case (a1,b1) is saddle point.

iv) IF l n –m2 = 0 and at (a1,b1) , no conclusion can be drawn about maximum or minimum and 

needs further investigation. Similarly we do this for other stationary points.
PROBLEMS:

1. Locate the stationary points & examine their nature of the following functions.

(’07 S -2 )

u =x4 + y4 -2x2 +4xy -2y2, (x > 0, y > 0) 

Sol: Given u( x ,y) = x4 + y4 -2x2 +4xy -2y2

-------------------> (1)

For maxima & minima
u

= 0, u = 0
x y

= 4x3 -4x + 4y = 0  x3 – x + y = 0

= 4y3 +4x - 4y = 0  y3 + x – y = 0 -------------------> (2)

Hence (3)

Adding (1) & (2) ,

x3 + y3 = 0

= x = – y -------------------> (3)

(1)  x2 – 2x  x = 0, 2, 2

 y = 0, - 2, 2

l =
 2 f 

= 12x2 – 4 , m = = (
x2

) = 4 & n = = 12y2 – 4

ln – m2 = (12x2 – 4 )( 12y2 – 4 ) -16

At ( , ) , ln – m2 = (24 – 4)(24 -4) -16 = (20) (20) – 16 > 0
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The function has minimum value at (

At (0,0) , ln – m2 = (0– 4)(0 -4) -16 = 0

(0,0) is not a extrem value.

, )

2. Investigate the maxima & minima if any of the function f(x) = x3y2(1-x-y).

(‘08 S – 4)

Sol: Given f(x) = x3y2 (1-x-y) = x3y2- x4y2 – x3y3

= 3x2y2 – 4x3y2 -3x2y3 = 2x3y – 2x4y -3x3y2

For maxima & minima = 0 and

 3x2y2 – 4x3y2 -3x2y3

 2x3y – 2x4y -3x3y2

From (1) & (2) 4x + 3y – 3 = 0

= 0

= 0 => x2y2(3 – 4x -3y) = 0 ---------------> (1)

= 0 => x3y(2 – 2x -3y) = 0 ----------------> (2)

----------------X2

2x + 3y - 2 = 0 -----------------X3

2x = 1 => x = ½

4 ( ½) + 3y – 3 = 0 => 3y = 3 -2 , y = (1/3)

l =
2 f

x2
= 6xy2-12x2y2 -6xy3

 
 

2x

 2 f 
(1/2,1/3) = 6(1/2)(1/3)2 -12 (1/2)2(1/3)2 -6(1/2)(1/3)3 = 1/3 – 1/3 -1/9 = -1/9

m =
xy

2 f
= ( ) =6x2y -8 x3y – 9x2y2









 2 f 

xy
(1/2 ,1/3) = 6(1/2)2(1/3) -8 (1/2)3(1/3) -9(1/2)2(1/3)3 = =

n = = 2x3 -2x4 -6x3y

 
 

2y

 2 f 
(1/2,1/3) = 2(1/2)3 -2(1/2)4 -6(1/2)3(1/3) =  - - = -

ln- m2 =(-1/9)(-1/8) –(-1/12)2  = - = =

The function has a maximum value at (1/2 , 1/3)
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3. Find three positive numbers whose sum is 100 and whose product is maximum.

(’08 S-1)



Sol: Let x ,y ,z be three +ve numbers.

Given x + y + z = 100

 Z = 100 – x – y

Let f (x,y) = xyz =xy(100 – x – y) =100xy –x2y-xy2

For maxima or minima = 0 and = 0

=100y –2xy-y2 = 0 => y(100- 2x –y) = 0  ----------------> (1)

= 100x –x2 -2xy = 0 => x(100 –x -2y) = 0  ------------------> (2)

100 -2x –y = 0

200 -2x -4y =0

-100 + 3y = 0  => 3y =100 => y =100/3 

100 – x –(200/3) = 0 => x = 100/3

=- 2yl =
2 f

x2

 
 

2x

 2 f 
 (100/3 , 100/3 ) = - 200/3

m =
xy

2 f
= ( ) = 100 -2x -2y

 

 2 f   (100/3 , 100/3 ) = 100 –(200/3) –(200/3) = -(100/3)
xy

2 f
n =

y2 = -2x


 
 2 y

 2 f 
 (100/3 , 100/3 ) = - 200/3

ln -m2 = (-200/3) (-200/3) - (-100/3)2 = (100)2 /3

The function has a maximum value at (100/3 , 100/3)

i.e. at x = 100/3, y = 100/3  z = 100 
100


100


100

3 3 3

The required no. are x = 100/3, y = 100/3, z = 100/3

4. Find the maxima & minima of the function f(x) = 2(x2 –y2) –x4 +y4 (’08 S-3)

Sol: Given f(x) = 2(x2 –y2) –x4 +y4 = 2x2 –2y2 –x4 +y4

For maxima & minima = 0 and = 0

= 4x - 4x3 = 0 => 4x(1-x2) = 0 => x = 0 , x = ± 1
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= -4y + 4y3 = 0 => -4y (1-y2) = 0 =>y = 0, y = ± 1

l = = 4-12x2

m =
x  y 

=   f  = 0
 

= -4 +12y2n =

we have ln – m2 = (4-12x2)( -4 +12y2 ) – 0

= -16 +48x2 +48y2 -144x2y2

= 48x2 +48y2 -144x2y2 -16 

At ( 0 , ± 1 )

ln – m2 = 0 + 48 - 0 -16 =32 > 0

l = 4-0 = 4 > 0

f has minimum value at ( 0 , ± 1 ) 

f (x ,y ) = 2(x2 –y2) –x4 +y4

f ( 0 , ± 1 ) = 0 – 2 – 0 + 1 = -1

The minimum value is ‘-1 ‘. 

At ( ± 1 ,0 )

ln – m2 = 48 + 0 - 0 -16 =32 > 0

l = 4-12 = - 8 < 0

f has maximum value at ( ± 1 ,0 ) 

f (x ,y ) = 2(x2 –y2) –x4 +y4

f ( ± 1 , 0 ) =2 -0 -1 + 0 = 1

The maximum value is ‘1 ‘.

At (0,0) , (± 1 , ± 1)

ln – m2 < 0 

l = 4 -12x2

(0 , 0) & (± 1 , ± 1) are saddle points.

F has no max & min values at (0 , 0) , (± 1 , ± 1).

i)

ii)

iii)

Assignment

1. Find the maximum value of x,y,z when x + y + z = a .

[ Ans: ]

179



*Extremum : A function which have a maximum or minimum or both is called 

‘extremum’

*Extreme value :- The maximum value or minimum value or both of a function is 

Extreme value.

*Stationary points: - To get stationary points we solve the equations = 0 and

= 0 i.e the pairs (a1, b1), (a2, b2) ………….. Are called 

Stationary.

*Maxima & Minima for a function with constant condition :Lagrangian Method

Suppose f(x , y , z) = 0 ------------(1)

( x , y , z) = 0 ------------- (2)

F(x , y , z) = f(x , y , z) + ( x , y , z) where is called Lagrange’s constant.

x
1. F = 0 => + = 0 --------------- (3)

F = 0 => + = 0 --------------- (4)
y

F

z
= 0   => + = 0 --------------- (5)

2. Solving the equations (2) (3) (4) & (5) we get the stationary point (x, y, z).

3. Substitute the value of x , y , z in equation (1) we get the extremum.

Problem:

1.   Find the minimum value of x2 +y2 +z2 given x + y + z =3a (’08 S-2)

Sol: u = x2 +y2 +z2

= x + y + z - 3a = 0 

Using Lagrange’s function

F(x , y , z) = u(x , y , z) + ( x , y , z) 

For maxima or minima

= + = 2x + = 0 ------------ (1)

= + = 2y + = 0 ------------ (2)

F

x

F

y

F

z
= + = 2z + = 0 ------------ (3)

(1) , (2) & (3)

= -2x = -2y = -2z

180



= x + x + x - 3a = 0

= a

= y =z = a

Minimum value of u = a2 + a2 + a2 =3 a2

Fill in the blanks-

1. if u=x+y and v=xy then = --------------------------

2. if x= cosv , y= v then =

3. =

4. if u= then =

5. x = -------------------------

6. Two functions u and v are said to be functionally dependent if = 

7. If u= and v= then = 

8. If u= siny,v= cosy then =

9. . = 

10. If x=rcos ,y=rsin then =

11. If u=3x+5y and v=4x-3y then =

13. If u= and v=xy then = 
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OBJECTIVE TYPE QUESTIONS

14. If u= - 2y ,v=x+y then

(a) (b) 2(x+1)

16. If u(1-v)=x, uv=y then

(a) 0 (b) 1

=

(c) 3(x+1) (d) None

. =

(c) xy (d) None  

y then . =17. If u= , v= x +

(a) 0 (b) 1 (c) xy (d) None

18. Are u=x , v=2x functionally dependent? If so what is ?

(a) yes,1 (b) yes,0 (c) No,0 (d) None

19. If u= y ,v=

(a)5

then is

(b)4 (c) (d)

(Assignment Questions)

{ Functions of Several Variables}

1. If x+y2=u , y+z2=v ,z+ x2=w find .

2. If x+y+z=u, y+z= uv, z=uvw then evaluate .

3. S.T the functions u=x+y+z, v=x2+y2+z2-2xy-2zx and w=x3+y3+z3-3xyz are functionally 

related.

4. Find the max & min values of the function f(x)=x5−3x4+5.

5. Find three positive numbers whose sum is 100 and whose product is maximum.

6. Locate the stationary points & examine their nature of the following functions u=x4+y4-

2x2+4xy-2y2 (x>0,y>0).

7. If u= ,v= , w= , find .
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